Программы Windows Устройства

Устройства на микросхеме К561ЛА7 › Схемы электронных устройств. Схема электронных приборов на микросхеме К561ЛА7 (К176ЛА7) К561ла7 аналог зарубежный

Схема простого и доступного металлоискателя на микросхеме К561ЛА7, она же CD4011BE. Данный металлоискатель сможет собрать своими руками даже начинающий радиолюбитель, но не смотря на простору схемы, он обладает достаточно не плохими характеристиками. Питается металлоискатель от обычной кроны, заряда которой хватит на долгое время, так как потребление мощность не большое.

Металлоискатель собран всего на одной микросхеме К561ЛА7 (CD4011BE), которая достаточно распространенная и доступная. Для настройки нужен осцилограф или частотаметр, но если собрать схему правильно, то эти приборы и не понадобятся вовсе.

Схема металлоискателя

Чувствительность металлоискателя

Что касается чувствительность, но она достаточно не плохая для такого простого прибора, скажем металлическую банку от консервы видит на расстоянии до 20 см. Монету номиналом 5 рублей, до 8 см. При обнаружении металлического предмета, в наушниках будет слышет тон, чем ближе катушка к объекту, тем тон сильнее. Если предмет имеет большую площадь, скажем как канализационный люк или кастрюля, то глубина обнаружения увеличивается.

Компоненты металлоискателя

  • Транзисторы можно использовать любые низкочастотные маломощные, такие на КТ315, КТ312, КТ3102 или их зарубежные аналоги ВС546, ВС945, 2SC639, 2SC1815
  • Микросхема соответственно К561ЛА7, заменить её можно на аналог CD4011BE или К561ЛЕ5
  • Диоды маломощные такие как кд522Б, кд105, кд106 или аналоги: in4148, in4001 и подобные.
  • Конденсаторы 1000 пФ, 22 нФ и 300 пФ должны быть керамическими, а лучше, подайдут слюдяные, если такие имеются.
  • Переменный резистор 20 кОм, нужно взять с выключателем или выключатель отдельно.
  • Медный провод для катушки, подойдет ПЭЛ или ПЭВ диаметром 0,5-0,7мм
  • Наушники обычные, низкоомные.
  • Батарея питания на 9 вольт, крона вполне годится.

Немного информации:

Плату металлоискателя можно поместить в пластиковый корпус от автоматов, как его сделать можете прочитать в этой статье: . В данном случае, была использована соединительная коробка))

Если не путать номиналы деталей, если спаять схему правильно и но инструкции намотать катушку, то металлоискатель заработает сразу без особых настроек.

Если при первом включении металлоискателя, в наушниках не слышно писка и изменения частоты при регулировке регулятора «ЧАСТОТА» - значит нужно подбирать резистор 10 кОм, стоящий последовательно с регулятором и/или конденсатор в этом генераторе (300 пф). Тем самым мы делаем одинаковыми частоты образцового и поискового генераторов.

При возбуждении генератора, появления свиста, шипения или искажений, припаять конденсатор 1000 пф (1nf) с шестого вывода микросхемы на корпус, как показано на схеме.

Осциллографом или частотомером посмотреть частоты сигналов на выводах 5 и 6 микросхемы К561ЛА7. Добиться их равенства вышеописанным методом настройки. Рабочая частота генераторов может колебаться от 80 до 200 кГц.

Защитный диод (любой маломощный) нужен для защиты микросхема, если к примеру вы не правильно подключите батарею, а такое бывает не редко.))

Катушка металлоисктеля

Катушка наматывается проводом ПЭЛ или ПЭВ 0,5-0,7 мм на оправе, диаметр которой может быть от 15 до 25 см и содержит 100 витков. Чем меньше диаметр катушки, тем меньше чувствительность, но больше избирательность мелких предметов. Если вы собираетесь использовать металлоискатель для поиска чёрного металла, то лучше изготовить катушку большего диаметра.

Катушка может содержать от 80 до 120 витков, после намотки необходимо плотно обмотать её изолентой как показано на схеме ниже.

Теперь необходимо по верх изоленты, намотать тонкую фольгу, подойдёт пищевая или от шоколада. Обматывать нужно не до конца, а оставить пару сантиметров, как показано ниже. Обратите внимание, фольга наматывается аккуратно, лучше нарезать ровные полоски шириной 2 сантиметра и обматывать катушку как изолентой.

Теперь снова плотно обматываем катушку изолентой.

Катушка готова, теперь можно закрепить её на каркас из диэлектрика, изготовить штангу и собрать всё до кучи. Штангу можно спаять из полипропиленовых труб и фитингов, диаметром 20 мм.

Для соединения катушки со схемой, подойдёт двойной экранированный провод (экран на корпус), например тот, который соединяет телевизор с DVD плеером (аудио-видео).

Как должен работать металлоискатель

При включении, регулятором «частота», в наушниках устанавливаем низкочастотный гул, при приближении к металлу изменяется частота.

Второй вариант, чтоб гул в ушах «не стоял», установить нулевые биения, т.е. совместить две частоты. В наушниках тогда будет тишина, но как только катушку подносим к металлу - частота поискового генератора изменяется и в наушниках появляется писк. Чем ближе к металлу - тем выше частота в наушниках. Но чувствительность при этом способе не велика. Прибор среагирует только при сильной расстройке генераторов, например при поднесении к крышке от банки.

Расположение DIP деталей на плате.

Расположение SMD деталей на плате.

Плата металлоискателя в сборе

Техника измерений

Генератор на К561ЛА7 с регулировкой частоты

Цифровые микросхемы могут реализовывать не только математическую логику. Один из примеров альтернативного функционала – генераторы тактовых импульсов.

В самом простейшем виде генератор представляет собой ни что иное, как колебательный контур, собранный на базе конденсатора и сопротивления (так называемый RC-контур). Однако, такие схемы отличаются низким качеством выходного сигнала и нелинейностью формируемых импульсов.

Придать им правильную "квадратную" форму смогут микросхемы, реализующие простую логику "И-НЕ", такие как К561ЛА7 или аналоги. Но обо всем поподробнее.

Описание К561ЛА7

Микросхема реализует логику четырёх независимых элементов "И-НЕ" (схема с цоколевкой ниже).

Рис. 1. К561ЛА7

Номинальное напряжение для питания – 10 В, максимальное – не более 15 В.

Может работать практически при любой температуре (от -45 до +85°С), потребляет совсем немного тока (до 0,3 мкА) и имеет небольшое время задержки (80 нс).

К прямым аналогам можно отнести микросхему CD4011A. Однако, в описываемой задаче могут применяться также:

  • К176ЛЕ5 (допустима прямая замена без изменения схемы);
  • Микросхемы из серии К561;
  • К176ПУ2/или ПУ1;
  • А также другие микросхемы, реализующие логику четырёх или более независимых инверторов.

На всякий случай приведем таблицу истинности.

Рис. 2. Таблицу истинности

Простой генератор частоты

Схема, обозначенная ниже, будет формировать меандр (прямоугольные импульсы).

Рис. 3. Схема, которая будет формировать меандр

Фактически можно обойтись и без последнего блока D1.4.

Колебания задаются контуром C1R1, а логические элементы преобразуют синусоидальный сигнал в прямоугольный, отсекая фронты спада и подъема согласно логике инвертирования (есть сигнал на входе, превышающий пороговое значение – выдается на 0, отсутствует – выдается логическая единица).

Недостаток такого генератора – отсутствие возможности регулирования частоты (она фиксированная и определяется номиналом конденсатора с резистором) и влияния на время паузы, длительности импульса (или их соотношение – то есть скважность).

Регулируемый генератор

Схема, обозначенная ниже позволяет отдельно регулировать время паузы и длительность импульса.

Рис. 4. Схема, которая позволяет отдельно регулировать время паузы и длительность импульса

За эту логику отвечают настроечные резисторы R2 и R3. Частотный диапазон регулируется незначительно и потому для его кардинальной смены можно предусмотреть включение нескольких конденсаторов разной емкости (на замену C1), включаемых в схему попеременно.

Еще одна версия с возможностью регулирования скважности (основана на схеме все того же мультивибратора).

Рис. 5. Вариант схемы с возможностью регулирования скважности

Можно назвать ее практически универсальной для различного рода экспериментов с ГТИ (генераторами тактовых импульсов).

Выглядит она следующим образом.

Рис. 6. Схема с различной формой сигнала

Номинал резисторов и конденсаторов не особо принципиален и может быть изменен под свои нужды.

Как видно выше, есть сразу три выхода с прямоугольным сигналом (меандром), треугольным и синусом.

Каждый из них может быть изменен соответствующими подстроечными резисторами.


Дата публикации: 06.03.2018

Мнения читателей
  • Виталий / 17.05.2019 - 16:50
    Подскажите а как увиличить амплитуду сигнала если в первой схеме поставить с1 на 100п например?и как рассчитать правельно резистор?
  • Антон / 31.08.2018 - 22:04
    Достаточно неплохо.

Рассмотрим схемы четырех электронных приборов построенных на микросхеме К561ЛА7 (К176ЛА7). Принципиальная схема первого прибора показана на рисунке 1. Это мигающий фонарь. Микросхема вырабатывает импульсы, которые поступают на базу транзистора VT1 и в те моменты, когда на его базу поступает напряжение единичного логического уровня (через резистор R2) он открывается и включает лампу накаливания, а в те моменты, когда напряжение на выводе 11 микросхемы равно нулевому уровню лампа гаснет.

График, иллюстрирующий напряжение на выводе 11 микросхемы показан на рисунке 1А.

Рис.1А
Микросхема содержит четыре логических элемента "2И-НЕ", входы которые соединены вместе. В результате получается четыре инвертора ("НЕ". На первых двух D1.1 и D1.2 собран мультивибратор, вырабатывающий импульсы (на выводе 4), форма которых показана на рисунке 1А. Частота этих импульсов зависит от параметров цепи, состоящей из конденсатора С1 и резистора R1. Приблизительно (без учета параметров микросхемы) эту частоту можно рассчитать по формуле F = 1/(CxR).

Работу такого мультивибратора можно пояснить так: когда на выходе D1.1 единица, на выходе D1.2 - нуль, это приводит к тому, что конденсатор С1 начинает заряжаться через R1, а вход элемента D1.1 следит за напряжением на С1. И как только это напряжение достигнет уровня логической единицы, схема как-бы переворачивается, теперь на выходе D1.1 будет ноль, а на выходе D1.2 единица.

Теперь уже конденсатор станет разряжаться через резистор, а вход D1.1 будет следить за этим процессом, и как только напряжение на нем станет равно логическому нуля схема опять перевернется. В результате уровень на выходе D1.2 будут импульсы, а на выходе D1.1 тоже будут импульсы, но противофазные импульсам на выходе D1.2 (рисунок 1А).

На элементах D1.3 и D1.4 выполнен усилитель мощности, без которого, в принципе, можно обойтись.

В данной схеме можно использовать детали самых разных номиналов, пределы, в которые должны укладывать параметры деталей отмечены на схеме. Например, R1 может иметь сопротивление от 470 кОм до 910 кОм, конденсатор С1 иметь емкость от 0,22 мкФ до 1,5 мкФ, резистор R2 - от 2 кОм до 3 кОм, таким же образом подписаны номиналы деталей и на других схемах.

Рис.1Б
Лампа накаливания - от карманного фонаря, а батарея питания - либо плоская на 4,5В, либо "Крона" на 9В, но лучше если взять две "плоские", включенные последовательно. Цоколевка (расположение выводов) транзистора КТ815 показана на рисунке 1Б.

Второе устройство - реле времени, таймер со звуковой сигнализацией окончания установленного временного промежутка (рисунок 2). В основе лежит мультивибратор, частота которого сильно увеличена, по сравнению с пред-идущей конструкцией, за счет уменьшения емкости конденсатора. Мультивибратор выполнен на элементах D1.2 и D1.3. Резистор R2 взять такой же как R1 в схеме на рисунке 1, а конденсатор (в данном случае С2) имеет значительно меньшую емкость, в пределах 1500-3300 пФ.

В результате импульсы на выходе такого мультивибратора (вывод 4) имеют звуковую частоту. Эти импульсы поступают на усилитель, собранный на элементе D1.4 и на пьезокрамический звукоизлучатель, который при работе мультивибратора издает звук высокого или среднего тона. Звукоизлучатель - пьезокерамический зуммер, например от звонка телефона-трубки. Если он имеет три вывода нужно подпаять любые два из них, а потом опытным путем выбрать из трех два таких, при подключении которых громкость звука максимальная.

Рис.2

Мультивибратор работает только тогда, когда на выводе 2 D1.2 будет единица, если ноль - мультивибратор не генерирует. Происходит это потому, что элемент D1.2 это элемент "2И-НЕ", который, как известно, отличается тем, что если на его один вход подать нуль, то на его выходе будет единица независимо от того, что происходит на его втором входе.

В микросхеме К561ЛА7 (или её аналогах К1561ЛА7, К176ЛА7, CD4011), содержится четыре логических элемента 2И-НЕ (рис 1). Логика работы элемента 2И-НЕ проста, - если на обоих его входах логические единицы, то на выходе будет ноль, а если это не так (то есть, на одном из входов или на обоих входах есть ноль), то на выходе будет единица. Микросхема К561ЛА7 логики КМОП, это значит, что ее элементы сделаны на полевых транзисторах, поэтому входное сопротивление К561ЛА7 очень высокое, а потребление энергии от источника питания очень малое (это касается и всех других микросхем серий К561, К176, К1561 или CD40).

На рисунке 2 показана схема простейшего реле времени с индикацией на светодиодах Отсчет времени начинается в момент включения питания выключателем S1. В самом начале конденсатор С1 разряжен и напряжение на нем мало (как логический ноль). По этому на выходе D1.1 будет единица, а на выходе D1.2 - ноль. Будет гореть светодиод HL2, а светодиод HL1 гореть не будет. Так будет продолжаться до тех пор, пока С1 не зарядится через резисторы R3 и R5 до напряжения, которое элемент D1.1 понимает как логическую единицу В этот момент, на выходе D1.1 возникает ноль, а на выходе D1.2 - единица.

Кнопка S2 служит для повторного запуска реле времени (когда вы ее нажимаете она замыкает С1 и разряжает его, а когда её отпускаете, - начинается зарядка С1 снова). Таким образом, отсчет времени начинается с момента включения питания или с момента нажатия и отпускания кнопки S2. Светодиод HL2 показывает, что идет отсчет времени, а светодиод HL1 - что отсчет времени завершен. А само время можно устанавливать переменным резистором R3.

На вал резистора R3 можно надеть ручку с указателем и шкалой, на которой подписать значения времени, измерив их при помощи секундомера. При сопротивлениях резисторов R3 и R4 и емкости С1 как на схеме, можно устанавливать выдержки от нескольких секунд до минуты и немного больше.

В схеме на рисунке 2 используется только два элемента микросхемы, но в ней есть еще два. Используя их можно сделать так, что реле времени по окончании выдержки будет подавать звуковой сигнал.

На рисунке 3 схема реле времени со звуком. На элементах D1 3 и D1.4 сделан мультивибратор, который вырабатывает импульсы частотой около 1000 Гц. Частота эта зависит от сопротивления R5 и конденсатора С2. Между входом и выходом элемента D1.4 включена пьезоэлектрическая «пищалка», например, от электронных часов или телефона-трубки, мультиметра. Когда мультивибратор работает она пищит.

Управлять мультивибратором можно изменяя логический уровень на выводе 12 D1.4. Когда здесь нуль мультивибратор не работает, а «пищалка» В1 молчит. Когда единица. - В1 пищит. Этот вывод (12) подключен к выходу элемента D1.2. Поэтому, «пищалка» пищит тогда, когда гаснет HL2, то есть, звуковая сигнализация включается сразу после того, как реле времени отработает временной интервал.

Если у вас нет пьезоэлектрической «пищалки» вместо неё можно взять, например, микродинамик от старого приемника или наушников, телефонного аппарата. Но его нужно подключить через транзисторный усилитель (рис. 4), иначе можно испортить микросхему.

Впрочем, если нам светодиодная индикация не нужна, - можно опять обойтись только двумя элементами. На рисунке 5 схема реле времени, в котором есть только звуковая сигнализация. Пока конденсатор С1 разряжен мультивибратор заблокирован логическим нулем и «пищалка» молчит. А как только С1 зарядится до напряжения логической единицы, - мультивибратор заработает, а В1 запищит На рисунке 6 схема звукового сигнализатора, подающего прерывистые звуковые сигналы. Причем тон звука и частоту прерывания можно регулировать Его можно использовать, например, как небольшую сирену или квартирный звонок

На элементах D1 3 и D1.4 сделан мультивибратор. вырабатывающий импульсы звуковой частоты, которые через усилитель на транзисторе VT5 поступают на динамик В1. Тон звука зависит от частоты этих импульсов, а их частоту можно регулировать переменным резистором R4.

Для прерывания звука служит второй мультивибратор на элементах D1.1 и D1.2. Он вырабатывает импульсы значительно более низкой частоты. Эти импульсы поступают на вывод 12 D1 3. Когда здесь логический ноль мультивибратор D1.3-D1.4 выключен, динамик молчит, а когда единица - раздается звук. Таким образом, получается прерывистый звук, тон которого можно регулировать резистором R4, а частоту прерывания - R2. Громкость звука во многом зависит от динамика. А динамик может быть практически любым (например, динамик от радиоприемника, телефонного аппарата, радиоточка, или даже акустическая система от музыкального центра).

На основе этой сирены можно сделать охранную сигнализацию, которая будет включаться каждый раз, когда кто-то открывает дверь в вашу комнату (рис. 7).

Устройство для создания эффекта огней бегущих из центра к краям солнышка. Кол-во светодиодов - 18 шт. Uпит.= 3...12В.

Для подстройки частоты мерцания изменить номиналы резисторов R1, R2, R3 или конденсаторов C1, C2, C3. К примеру, увеличение R1, R2, R3 вдвое (20к) частота уменьшится вдвое. При замене конденсаторов C1, C2, C3 увеличить емкость (22мкФ). Возможна замена К561ЛА7 на К561ЛЕ5 либо на полный зарубежный аналог CD4011. Номиналы резисторов R7, R8, R9 зависят от напряжения питания и от применяемых светодиодов. При сопротивлении 51 Ом и напряжении питания 9В ток через светодиоды будеть чуть меньше 20мА. Если вам нужна экономичность устройства и вы используете светодиоды яркого свечения при малом токе, то сопротивление резисторов можно сушественно увеличить (до 200 Ом и даже больше).

Еще лучше, при питании 9В использовать последовательное соединение светодиодов:

Ниже приведены рисунки печатных плат двух вариантов: солнышко и мельница:


C этой схемой также часто просматривают: