Программы Windows Устройства

Смотреть страницы где упоминается термин суперпозиция функций. Тема: «Функция: понятие, способы задания, основные характеристики. Обратная функция. Суперпозиция функций Счетные и несчетные множества

Функция f, получаемая из функций f 1 , f 2 ,…f n с помощью операций подстановки и переименования аргументов, называется суперпозицией функций.

Всякая формула, выражающая функцию f как суперпозицию других функций, задаёт способ её вычисления, т. е. формулу можно вычислить, если вычислены значения всех её подформул. Значение подформулы можно вычислить по известному набору значений двоичных переменных.

По каждой формуле можно восстановить таблицу логической функции, но не наоборот, т.к. каждой логической функции можно представить несколько формул в различных базисах

Формулы F i и F j представляющие одну и ту же логическую функцию f i, называются эквивалентными . Так, эквивалентными формулами являются:

1. f 2 (x 1 ; x 2)=(x 1 ×`x 2)=ù(`x 1 Úx 2)= ù(x 1 ®x 2);

2. f 6 (x 1 ; x 2)=(`x 1 ×x 2 Úx 1 ×`x 2)= ù(x 1 «x 2)=(x 1 Åx 2);

3. f 8 (x 1 ; x 2)=(`x 1 ×`x 2)= ù(x 1 Úx 2)=(x 1 ¯x 2);

4. f 14 (x 1 ;x 2)=(`x 1 Ú`x 2)= ù(x 1 ×x 2)=x 1 ½x 2 ;

5. f 9 (x 1 ;x 2)=((`x 1 ×`x 2)Ú(x 1 ×x 2))=(x 1 «x 2) ;

6. f 13 (x 1 ;x 2)= (`x 1 Úx 2)=(x 1 ®x 2).

Если какая-либо формула F содержит подформулу F i , то замена F i на эквивалентную F j не изменяет значения формулы F при любом наборе булевого вектора, но изменяет форму её описания. Вновь полученная формула F` эквивалентна формуле F.

Для упрощения сложных алгебраических выражений булевой функции выполняют эквивалентные преобразования , используя законы булевой алгебры и правила подстановки и замещения ,

При написании формул булевой алгебры следует помнить:

· число левых скобок равно числу правых скобок,

· нет двух рядом стоящих логических связок, т. е. между ними должна быть формула,

· нет двух рядом стоящих формул, т. е. между ними должна быть логическая связка,

· логическая связка “×” сильнее логической связки “Ú”,

· если “ù ” относится к формуле (F 1 ×F 2) или (F 1 Ú F 2), то прежде всего следует выполнить эти преобразования по закону де Моргана: ù(F 1 ×F 2)=`F 1 Ú`F 2 или ù(F 1 ÚF 2)=`F 1 ×`F 2 ;

· операция “× ” сильнее “Ú”, что позволяет опускать скобки.

Пример : выполнить эквивалентные преобразования формулы F=x 1 ×x 2 ×x 3 ×`x 4 Ú`x 1 ×x 3 Ú`x 2 ×x 3 Úx 3 ×x 4 .



· по закону коммутативности:

F=x 3 ×x 1 ×x 2 ×`x 4 Úx 3 ×`x 1 Úx 3 ×`x 2 Úx 3 ×x 4 ;

· по закону дистрибутивности:

F=x 3 ×x 1 ×x 2 ×`x 4 Úx 3 ×`x 1 Úx 3 ×(`x 2 Úx 4);

· по закону дистрибутивности:

F=x 3 ×x 1 ×x 2 ×`x 4 Úx 3 ×(`x 1 Ú`x 2 Úx 4);

· по закону дистрибутивности:

F=x 3 ×((x 1 ×x 2 ×`x 4)Ú(`x 1 Ú`x 2 Úx 4));

· по закону де Моргана:

F=x 3 ×((x 1 ×x 2 ×`x 4)Úù(x 1 ×x 2 ×`x 4));

· по закону противоречия:

Таким образом x 1 ×x 2 ×x 3 ×`x 4 Ú`x 1 ×x 3 Ú`x 2 ×x 3 Úx 3 ×x 4 =x 3 .

Пример: выполнить преобразования формулы

F=(x 1 ×`x 2 Ú`x 1 ×x 2)×ù(x 1 ×x 2)Ú(x 1 ×x 2)×ù(x 1 ×`x 2 Ú`x 1 ×x 2);

· по закону де Моргана

F=(x 1 ×`x 2 Ú`x 1 ×x 2)×(`x 1 Ú`x 2)Ú(x 1 ×x 2)×(`x 1 Úx 2)×(x 1 Ú`x 2);

· по закону дистрибутивности:

F=x 1 ×`x 2 Ú`x 1 ×x 2 Úx 1 ×x 2 ;

· по законам коммутативности и дистрибутивности:

F= `x 1 ×x 2 Úx 1 ×(`x 2 Úx 2);

· по закону противоречия:

F= `x 1 ×x 2 Úx 1 ;

· по закону Порецкого

Таким образом (x 1 ×`x 2 Ú`x 1 ×x 2)×ù(x 1 ×x 2)Ú(x 1 ×x 2)×ù(x 1 ×`x 2 Ú`x 1 ×x 2)= (x 2 Úx 1).

Пример: выполнить преобразование формулы F=ù(`x 1 Úx 2)Ú((`x 1 Úx 3)×x 2).

· по закону де Моргана:

F= ù(`x 1 Úx 2)×ù((`x 1 Úx 3)×x 2);

· по закону де Моргана:

F=x 1 ×`x 2 ×(ù(`x 1 Úx 3)Ú`x 2);

· по закону де Моргана:

F=x 1 ×`x 2 ×(x 1 ×`x 3 Ú`x 2);

· по закону дистрибутивности:

F=x 1 ×`x 2 ×`x 3 Úx 1 ×`x 2 ;

· по закону поглощения:

Таким образом ù(`x 1 Úx 2)×((`x 1 Úx 3)×x 2)= x 1 ×`x 2 .

Пример : выполнить преобразование формулы:

F=ù(x 1 ®x 2)×(`x 3 Ú`x 4)Ú(x 1 ¯x 2)×ù(x 3 ×x 4).

1) преобразовать формулу в базис булевой алгебры:

F=ù(`x 1 Úx 2)×(`x 3 Ú`x 4)Úù(x 1 Úx 2)× ù(x 3 ×x 4);

2) опустить знак “` “ до двоичных переменных:

F=(x 1 ×`x 2)×(`x 3 Ú`x 4)Ú(`x 1 ×`x 2)×(`x 3 Ú`x 4);

3) преобразовать формулу по закону дистрибутивности:

F=x 1 ×`x 2 ×`x 3 Úx 1 ×`x 2 ×`x 4 Ú`x 1 ×`x 2 ×`x 3 Ú`x 1 ×`x 2 ×`x 4 ;

4) вынести за скобку `x 2 по закону дистрибутивности:

F=`x 2 ×(x 1 ×`x 3 Úx 1 ×`x 4 Ú`x 1 ×`x 3 Ú`x 1 ×`x 4);

5) преобразовать по закону дистрибутивности:

F=`x 2 ×(`x 3 ×(x 1 Ú`x 1)Ú`x 4 ×(x 1 Ú`x 1));

6) использовать закон противоречия:

F=`x 2 ×(`x 3 Ú`x 4)

Свойства булевых функций

Часто возникает вопрос: всякая ли булева функция представима суперпозицией формул f 0 , f 1 ,..f 15 ? Для того, чтобы определить возможность формирования любой булевой функции с помощью суперпозиции этих формул, необходимо определить их свойства и условия использования функционально полной системы.

Самодвойственные булевы функции

самодвойственной , если f(x 1 ;x 2 ;…x n)=`f(`x 1 ;`x 2 ;…`x n).

Например, функции f 3 (x 1 ;x 2)=x 1 , f 5 (x 1 ;x 2)=x 2 , f 10 (x 1 ;x 2)=`x 2 и f 12 (x 1 ;x 2)=`x 1 являются самодвойственными, т. к. при изменении значения аргумента они изменяют свое значение.

Любая функция, полученная с помощью операций суперпозиции из самодвойственных булевых функций, сама является самодвойственной. Поэтому множество самодвойственных булевых функций не позволяет формировать не самодвойственные функции.

Монотонные булевы функции

Функция f(x 1 ; x 2 ;…x n) называется монотонной , если для каждого s 1i £s 2i булевых векторов (s 11 ; s 12 ;……;s 1n) и (s 21 ;s 22 ;……;s 2n) выполняется условие: f(s 11 ;s 12 ;…;s 1i ;…;s 1n)£f(s 21 ;s 22 ;…;s 2i ;…;s 2n).

Например, для функций f(x 1 ; x 2) монотонными функциями являются:

если (0; 0)£(0; 1), то f(0; 0)£f(0; 1),

если (0; 0)£(1; 0), то f(0; 0)£f(1; 0),

если (0; 1)£(1; 1), то f(0; 1)£f(1; 1),

если (1; 0)£(1; 1), то f(1; 0)£f(1; 1).

Таким условиям удовлетворяют следующие функции:

f 0 (x 1 ; x 2)=0; f 1 (x 1 ; x 2)=(x 1 ×x 2); f 3 (x 1 ; x 2)=x 1 ; f 5 (x 1 ; x 2)=x 2 ; f 7 (x 1 ;x 2)=(x 1 Úx 2); f 15 (x 1 ; x 2)=1.

Любая функция, полученная с помощью операции суперпозиции из монотонных булевых функций, сама является монотонной. Поэтому множество монотонных функций не позволяет формировать не монотонные функции.

Линейные булевы функции

Алгебра Жегалкина, опирающаяся на базис F 4 ={×; Å; 1}, позволяет любую логическую функцию представить полиномом, каждый член которого есть конъюнкция I булевых переменных булевого вектора в пределах 0£i£n:

P(x 1 ; x 2 ;…x n)=b 0 ×1 Å b i ×x i Å 1 £ j ¹ k £ n b j ×x j ×x k Å……Å b 2n-1 ×x 1 ×x 2 ×...×x n.

Например, для логических функций f 8 (x 1 ; x 2)

полином Жегалкина имеет вид: P(x 1 ; x 2)=1Å x 1 Å x 2 Å x 1 ×x 2 .

Преимущества алгебры Жегалкина состоят в “арифметизации” логических формул, а недостатки - в сложности, особенно при большом числе двоичных переменных.

Полиномы Жегалкина, не содержащие конъюнкции двоичных переменных, т.е. P(x 1 ; x 2 ;…;x n)=b 0 ×1Åb 1 ×x 1 Å…Åb n ×x n называют линейными .

Например, f 9 (x 1 ; x 2)=1Åx 1 Åx 2 , или f 12 (x 1 ;x 2)=1Åx 1 .

Основные свойства операции сложения по модулю 2 приведены в таблице 1.18.

Если логическая функция задана таблицей или формулой в любом базисе, т.е. известны значения булевой функции для различных наборов булевых переменных, то можно вычислить все

коэффициенты b i полинома Жегалкина, составив систему уравнений по всем известным наборам двоичных переменных.

Пример : дана булева функция f(x 1 ;x 2)=x 1 Úx 2 . Значение этой функции известны для всех наборов булевых переменных.

F(0;0)=0=b 0 ×1Å b 1 ×0 Å b 2 ×0 Å b 3 ×0×0;

f(1;0)=1=b 0 ×1Å b 1 ×1Å b 2 ×0Å b 3 ×1×0;

f(1;1)=1=b 0 ×1Å b 1 ×1Å b 2 ×1Å b 3 ×1×1;

Откуда находим b 0 =0; b 1 =1; b 2 =1; b 3 =1.

Следовательно, (x 1 Úx 2)=x 1 Åx 2 Åx 1 ×x 2 , т. е. дизъюнкция есть нелинейная булева функция.

Пример : дана булева функция f(x 1 ;x 2)=(x 1 ®x 2). Значение этой функции также известны для всех наборов двоичных переменных.

F(0;0)=1=b 0 ×1Å b 1 ×0 Å b 2 ×0 Å b 3 ×0×0;

f(0;1)=1=b 0 ×1Å b 1 ×0 Å b 2 ×1Å b 3 ×0×1;

f(1;0)=0=b 0 ×1Åb 1 ×1Åb 2 ×0Åb 3 ×1×0;

f(1;1)=1=b 0 ×1Åb 1 ×1Åb 2 ×1Åb 3 ×1×1;

Откуда находим b 0 =1; b 1 =1; b 2 =0; b 3 =1.

Следовательно, (x 1 ®x 2)=1Å x 2 Å x 1 ×x 2 .

В таблице 1.19 приведены полиномы Жегалкина для основных представителей булевых функций из таблицы 1.15.

Если дано аналитическое выражение логической функции и неизвестны ее значения для различных наборов двоичных переменных, то можно построить полином Жегалкина, опираясь на конъюнктивный базис алгебры Буля F 2 ={` ; ×}:

Пусть f(x 1 ; x 2)=(x 1 Úx 2).

Тогда (x 1 Úx 2)=ù(`x 1 ×`x 2)=((x 1 Å 1)×(x 2 Å 1))Å 1=x 1 ×x 2 Å x 1 ×1Å x 2 ×1Å 1×1Å1=

(x 1 Åx 2 Åx 1 ×x 2).

Пусть f(x 1 ;x 2)=(x 1 ®x 2).

Тогда (x 1 ®x 2)=(`x 1 Úx 2)=ù(x 1 ×`x 2)=x 1 ×(x 2 Å 1)Å 1=x 1 ×x 2 Å x 1 ×1Å 1= =(1Åx 1 Åx 1 ×x 2).

Пусть f(x 1 ;x 2)=(x 1 «x 2).

Тогда (x 1 «x 2)=(`x 1 ×`x 2 Úx 1 ×x 2)=ù(ù(`x 1 ×`x 2)×ù(x 1 ×x 2))=(((x 1 Å1)×(x 2 Å1))Å1)× ×(x 1 ×x 2 Å)Å1=(x 1 ×x 2 Åx 1 Åx 2 Å1Å1)×(x 1 ×x 2 Å1)Å1=x 1 ×x 2 Åx 1 ×x 2 Åx 1 ×x 2 Åx 1 Å

x 1 ×x 2 Åx 2 Å1=(1Åx 1 Åx 2).

Любая функция, полученная с помощью операции суперпозиции из линейных логических функций, сама является линейной. Поэтому множество линейных функций не позволяет формировать нелинейные функции.

1.5.6.4. Функции, сохраняющие “0”

Функция f(x 1 ; x 2 ;...x n) называется сохраняющей “0”, если для наборов значений двоичных переменных (0; 0;...0) функция принимает значение f(0; 0;…0)=0.

Например, f 0 (0; 0)=0, f 3 (0; 0)=0, f 7 (0; 0)=0 и др.

Любая функция, полученная с помощью операции суперпозиции из функций, сохраняющих “0”, сама является функцией, сохраняющей “0” Поэтому множество функций, сохраняющих “0”, не позволяет формировать функции, не сохраняющие “0”.

1.5.6.5. Функции, сохраняющие “1”

Функция f(x 1 ; x 2 ;…x n) называется сохраняющей “1”, если для наборов значений двоичных переменных (1; 1;…1) функция принимает значение f(1;1;…1)=1.

Например, f 1 (1; 1)=1, f3(1; 1)=1, f 5 (1; 1)=1 и др.

Любая функция, полученная с помощью операции суперпозиции из функций, сохраняющих “1”, сама является сохраняющей “1”. Поэтому множество функций, сохраняющих “1”, не позволяет формировать функции, не сохраняющие “1”.

Определение функции, области задания и множества значений. Определения, связанные с обозначением функции. Определения сложной, числовой, действительной, монотонной и многозначной функции. Определения максимума, минимума, верхней и нижней граней для ограниченных функций.

Содержание

Функцией y = f(x) называется закон (правило, отображение), согласно которому, каждому элементу x множества X ставится в соответствие один и только один элемент y множества Y .

Множество X называется областью определения функции .
Множество элементов y ∈ Y , которые имеют прообразы во множестве X , называется множеством значений функции (или областью значений ).

Область определения функции иногда называют множеством определения или множеством задания функции.

Элемент x ∈ X называют аргументом функции или независимой переменной .
Элемент y ∈ Y называют значением функции или зависимой переменной .

Само отображение f называется характеристикой функции .

Характеристика f обладает тем свойством, что если два элемента и из множества определения имеют равные значения: , то .

Символ, обозначающий характеристику, может совпадать с символом элемента значения функции. То есть можно записать так: . При этом стоит помнить, что y - это элемент из множества значений функции, а - это правило, по которому для элемента x ставится в соответствие элемент y .

Сам процесс вычисления функции состоит из трех шагов. На первом шаге мы выбираем элемент x из множества X . Далее, с помощью правила , элементу x ставится в соответствие элемент множества Y . На третьем шаге этот элемент присваивается переменной y .

Частным значением функции называют значение функции при выбранном (частном) значении ее аргумента.

Графиком функции f называется множество пар .

Сложные функции

Определение
Пусть заданы функции и . Причем область определения функции f содержит множество значений функции g . Тогда каждому элементу t из области определения функции g соответствует элемент x , а этому x соответствует y . Такое соответствие называют сложной функцией : .

Сложную функцию также называют композицией или суперпозицией функций и иногда обозначают так: .

В математическом анализе принято считать, что если характеристика функции обозначена одной буквой или символом, то она задает одно и то же соответствие. Однако, в других дисциплинах, встречается и другой способ обозначений, согласно которому отображения с одной характеристикой, но разными аргументами, считаются различными. То есть отображения и считаются различными. Приведем пример из физики. Допустим мы рассматриваем зависимость импульса от координаты . И пусть мы имеем зависимость координаты от времени . Тогда зависимость импульса от времени является сложной функцией . Но ее, для краткости, обозначают так: . При таком подходе и - это различные функции. При одинаковых значениях аргументов они могут давать различные значения. В математике такое обозначение не принято. Если требуется сокращение, то следует ввести новую характеристику. Например . Тогда явно видно, что и - это разные функции.

Действительные функции

Область определения функции и множество ее значений могут быть любыми множествами.
Например, числовые последовательности - это функции, областью определения которых является множество натуральных чисел, а множеством значений - вещественные или комплексные числа.
Векторное произведение тоже функция, поскольку для двух векторов и имеется только одно значение вектора . Здесь областью определения является множество всех возможных пар векторов . Множеством значений является множество всех векторов.
Логическое выражение является функцией. Ее область определения - это множество действительных чисел (или любое множество, в котором определена операция сравнения с элементом “0”). Множество значений состоит из двух элементов - “истина” и “ложь”.

В математическом анализе большую роль играют числовые функции.

Числовая функция - это функция, значениями которой являются действительные или комплексные числа.

Действительная или вещественная функция - это функция, значениями которой являются действительные числа.

Максимум и минимум

Действительные числа имеют операцию сравнения. Поэтому множество значений действительной функции может быть ограниченным и иметь наибольшее и наименьшее значения.

Действительная функция называется ограниченной сверху (снизу) , если существует такое число M , что для всех выполняется неравенство:
.

Числовая функция называется ограниченной , если существует такое число M , что для всех :
.

Максимумом M (минимумом m ) функции f , на некотором множестве X называют значение функции при некотором значении ее аргумента , при котором для всех ,
.

Верхней гранью или точной верхней границей действительной, ограниченной сверху функции называют наименьшее из чисел, ограничивающее область ее значений сверху. То есть это такое число s , для которого для всех и для любого , найдется такой аргумент , значение функции от которого превосходит s′ : .
Верхняя грань функции может обозначаться так:
.

Верхней гранью неограниченной сверху функции

Нижней гранью или точной нижней границей действительной, ограниченной снизу функции называют наибольшее из чисел, ограничивающее область ее значений снизу. То есть это такое число i , для которого для всех и для любого , найдется такой аргумент , значение функции от которого меньше чем i′ : .
Нижняя грань функции может обозначаться так:
.

Нижней гранью неограниченной снизу функции является бесконечно удаленная точка .

Таким образом, любая действительная функция, на не пустом множестве X , имеет верхнюю и нижнюю грани. Но не всякая функция имеет максимум и минимум.

В качестве примера рассмотрим функцию , заданную на открытом интервале .
Она ограничена, на этом интервале, сверху значением 1 и снизу - значением 0 :
для всех .
Эта функция имеет верхнюю и нижнюю грани:
.
Но она не имеет максимума и минимума.

Если мы рассмотрим туже функцию на отрезке , то она на этом множестве ограничена сверху и снизу, имеет верхнюю и нижнюю грани и имеет максимум и минимум:
для всех ;
;
.

Монотонные функции

Определения возрастающей и убывающей функций
Пусть функция определена на некотором множестве действительных чисел X . Функция называется строго возрастающей (строго убывающей)
.
Функция называется неубывающей (невозрастающей) , если для всех таких что выполняется неравенство:
.

Определение монотонной функции
Функция называется монотонной , если она неубывающая или невозрастающая.

Многозначные функции

Пример многозначной функции. Различными цветами обозначены ее ветви. Каждая ветвь является функцией.

Как следует из определения функции, каждому элементу x из области определения, ставится в соответствие только один элемент из множества значений. Но существуют такие отображения, в которых элемент x имеет несколько или бесконечное число образов.

В качестве примера рассмотрим функцию арксинус : . Она является обратной к функции синус и определяется из уравнения:
(1) .
При заданном значении независимой переменной x , принадлежащему интервалу , этому уравнению удовлетворяет бесконечно много значений y (см. рисунок).

Наложим на решения уравнения (1) ограничение. Пусть
(2) .
При таком условии, заданному значению , соответствует только одно решение уравнения (1). То есть соответствие, определяемое уравнением (1) при условии (2) является функцией.

Вместо условия (2) можно наложить любое другое условие вида:
(2.n) ,
где n - целое. В результате, для каждого значения n , мы получим свою функцию, отличную от других. Множество подобных функций является многозначной функцией . А функция, определяемая из (1) при условии (2.n) является ветвью многозначной функции .

Это совокупность функций, определенных на некотором множестве.

Ветвь многозначной функции - это одна из функций, входящих в многозначную функцию.

Однозначная функция - это функция.

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Пусть есть 2 функции:

: A→B и g: D→F

Пусть область определения D функции g входит в область значений функции f (DB). Тогда можно определить новую функцию – суперпозицию (композицию, сложную функцию) функций f и g: z = g ((x )).

Примеры. f(x)=x 2 , g(x)=e x . f:R→R, g:R→R.

(g(x))=e 2x , g((x))=.

Определение

Пусть идве функции. Тогда их композицией называется функция, определённая равенством:

Свойства композиции

    Композиция ассоциативна:

    Если F = id X - тождественное отображение на X , то есть

.

    Если G = id Y - тождественное отображение на Y , то есть

.

Дополнительные свойства

Счетные и несчетные множества.

Два конечных множества состоят из равного числа элементов, если между этими множествами можно установить взаимно однозначное соответствие. Число элементов конечного множества – мощность множества.

Для бесконечного множества можно установить взаимно однозначное соответствие между всем множеством и его частью.

Самым простым из бесконечных множеств является множество N.

Определение. Множества А и В называются эквивалентными (АВ), если между ними можно установить взаимно однозначное соответствие.

Если эквивалентны два конечных множества, то они состоят из одного и того же числа элементов.

Если же эквивалентные между собой множества А и В произвольны, то говорят, что А и В имеют одинаковую мощность . (мощность = эквивалентность).

Для конечных множеств понятие мощности совпадает с понятием числа элементов множества.

Определение. Множество называется счетным , если можно установить взаимно однозначное соответствие между ним и множеством натуральных чисел. (Т.е. счетное множество – бесконечное, эквивалентное множеству N).

(Т.е. все элементы счетного множества можно занумеровать).

Свойства отношения равномощности.

1) АА- рефлексивность.

2) АВ, то ВА – симметричность.

3) АВ и ВС, то АС – транзитивность.

Примеры.

1) n→2n, 2,4,6,… - четные натуральные

2) n→2n-1, 1,3,5,…- нечетные натуральные.

Свойства счетных множеств .

1. Бесконечные подмножества счетного множества счетны.

Доказательство . Т.к. А – счетно, то А: х 1 ,х 2 ,… - отобразили А в N.

ВА, В: →1,→2,… - поставили каждому элементу В в соответствиенатуральное число, т.е. отобразили В в N. Следовательно В – счетно. Ч.т.д.

2. Объединение конечной (счетной) системы счетных множеств – счетно.

Примеры .

1. Множество целых чисел Z – счетно, т.к. множество Z можно представить как объединение счетных множеств А и В, где А: 0,1,2,.. и В: -1,-2,-3,…

2. Множество упорядоченных пар {(m,n): m,nZ} (т.е. (1,3)≠(3,1)).

3 (!) . Множество рациональных чисел – счетно.

Q=. Можно установить взаимно однозначное соответствие между множеством несократимых дробейQ и множеством упорядоченных пар:

Т.о. множество Q равномощно множеству {(p,q)}{(m,n)}.

Множество {(m,n)} – множество всех упорядоченных пар – счетно. Следовательно и множество {(p,q)} – счетно, а значит и Q – счетно.

Определение. Иррациональным числом называется произвольная бесконечная десятичная непериодическая дробь, т.е.  0 , 1  2 …

Множество всех десятичных дробей образуют множество вещественных (действительных) чисел.

Множество иррациональных чисел – несчетно.

Теорема 1 . Множество вещественных чисел из промежутка (0,1) – несчетное множество.

Доказательство . Допустим противное, т.е. что все числа интервала (0,1) можно занумеровать. Тогда, записывая эти числа в виде бесконечных десятичных дробей, получим последовательность:

х 1 =0,а 11 а 12 …a 1n …

x 2 =0,a 21 a 22 …a 2n …

…………………..

x n =0,a n 1 a n 2 …a nn …

……………………

Рассмотрим теперь вещественное число х=0,b 1 b 2 …b n …, где b 1 - любая цифра, отличная от а 11 , (0 и 9), b 2 - любая цифра, отличная от а 22 , (0 и 9),…, b n - любая цифра, отличная от a nn , (0 и 9).

Т.о. х(0,1), но хx i (i=1,…,n) т.к. в противном случае, b i =a ii . Пришли к противоречию. Ч.т.д.

Теорема 2. Любой промежуток вещественной оси является несчетным множеством.

Теорема 3. Множество действительных (вещественных) чисел – несчетно.

Про всякое множество, равномощное множеству вещественных чисел говорят, что оно мощности континуума (лат. continuum – непрерывное, сплошное).

Пример . Покажем, что интервал обладает мощностью континуума.

Функция у=tg x: →R отображает интервал на всю числовую прямую (график).

Суперпозиция функций

Суперпозицией функций f1, …, fm называется функция f, полученная с помощью подстановок этих функций друг в друга и переименования переменных.

Пусть имеются два отображения и, причем непустое множество. Тогда супер позицией или композицией функций и называется функция, определенная равенством для всякого.

Областью определения суперпозиции является множество.

Функция называется внешней, а -внутренней функцией для суперпозиции.

Функции, представленные в виде композиции "более простых", называются сложными функциями.

Примерами использования суперпозиции являются: решение системы уравнений методом подстановки; нахождение производной от функции; нахождение значения алгебраического выражения с помощью подстановки в него значения заданных переменных.

Рекурсивные функции

Рекурсией называется такой способ задания функции, при котором значения определяемой функции для произвольных значений аргументов выражаются известным образом через значения определяемой функции для меньших значений аргументов.

Примитивно рекурсивная функция

Определение понятия примитивно рекурсивной функции является индуктивным. Оно состоит из указания класса базовых примитивно рекурсивных функций и двух операторов (суперпозиции и примитивной рекурсии), позволяющих строить новые примитивно рекурсивные функции на основе уже имеющихся.

К числу базовых примитивно рекурсивных функций относятся функции следующих трёх видов:

Нулевая функция-- функция без аргументов, всегда возвращающая0 .

Функция следованияодного переменного, сопоставляющая любому натуральному числунепосредственно следующее за ним натуральное число.

Функции, где, от n переменных, сопоставляющие любому упорядоченному набору натуральных чисел число из этого набора.

Операторы подстановки и примитивной рекурсии определяются следующим образом:

Оператор суперпозиции (иногда--оператор подстановки). Пусть -- функция от m переменных, а -- упорядоченный набор функций отпеременных каждая. Тогда результатом суперпозиции функцийв функцию называется функцияотпеременных, сопоставляющая любому упорядоченному набору натуральных чисел число.

Оператор примитивной рекурсии. Пусть -- функция от n переменных, а -- функция от переменных. Тогда результатом применения оператора примитивной рекурсии к паре функций и называется функция от переменной вида;

В данном определении переменнуюможно понимать как счётчик итераций, -- как исходную функцию в начале итерационного процесса, выдающего некую последовательность функцийпеременных, начинающуюся с, и -- как оператор, принимающий на входпеременных, номер шага итерации, функцию на данном шаге итерации, и возвращающий функцию на следующем шаге итерации.

Множество примитивно рекурсивных функций -- это минимальное множество, содержащее все базовые функции и замкнутое относительно указанных операторов подстановки и примитивной рекурсии.

В терминах императивного программирования -- примитивно рекурсивные функции соответствуют программным блокам, в которых используется только арифметические операции, а также условный оператор и оператор арифметического цикла (оператор цикла, в котором число итераций известно на момент начала цикла). Если же программист начинает использовать оператор цикла while, в котором число итераций заранее неизвестно и, в принципе, может быть бесконечным, то он переходит в класс частично рекурсивных функций.

Укажем на ряд широко известных арифметических функций, являющихся примитивно рекурсивными.

Функция сложения двух натуральных чисел () может быть рассмотрена в качестве примитивно рекурсивной функции двух переменных, получаемой в результате применения оператора примитивной рекурсии к функциям и, вторая из которых получается подстановкой основной функции в основную функцию:

Умножение двух натуральных чисел может быть рассмотрено в качестве примитивно рекурсивной функции двух переменных, получаемой в результате применения оператора примитивной рекурсии к функциям и, вторая из которых получается подстановкой основных функций и в функцию сложения:

Симметрическая разность(абсолютная величина разности) двух натуральных чисел () может быть рассмотрена в качестве примитивно рекурсивной функции двух переменных, получаемой в результате применения следующих подстановок и примитивных рекурсий: