Программы Windows Устройства

Коэффициент нелинейных искажений (КНИ, THD), коэффициент гармонических искажений (КГИ, Kг, THDr) – различные подходы к определению. Нелинейные искажения звукового тракта. Коэффициент нелинейных искажений - КНИ. Усилители НЧ Типовые значения КНИ

Входного сигнала, к среднеквадратичной сумме спектральных компонентов входного сигнала, иногда используется нестандартизованный синоним - клирфактор (заимств. с нем.). КНИ - безразмерная величина, выражается обычно в процентах. Кроме КНИ уровень нелинейных искажений можно выразить с помощью коэффициента гармонических искажений .

Коэффициент гармонических искажений - величина, выражающая степень нелинейных искажений устройства (усилителя и др.), равная отношению среднеквадратичного напряжения суммы высших гармоник сигнала, кроме первой, к напряжению первой гармоники при воздействии на вход устройства синусоидального сигнала.

Коэффициент гармоник так же как и КНИ выражается в процентах. Коэффициент гармоник (K Г ) связан с КНИ (K Н ) соотношением:

Измерения

  • В низкочастотном (НЧ) диапазоне (до 100-200 кГц) для измерения КНИ применяются измерители нелинейных искажений (измерители коэффициента гармоник).
  • На более высоких частотах (СЧ, ВЧ) используют косвенные измерения с помощью анализаторов спектра или селективных вольтметров .

Типовые значения КНИ

  • 0 % - форма сигнала представляет собой идеальную синусоиду.
  • 3 % - форма сигнала отлична от синусоидальной, но искажения не заметны на глаз.
  • 5 % - отклонение формы сигнала от синусоидальной заметно на глаз по осциллограмме.
  • 10 % - стандартный уровень искажений, при котором считают реальную мощность (RMS) УМЗЧ .
  • 21 % - например, сигнал трапецеидальной или ступенчатой формы.
  • 43 % - например, сигнал прямоугольной формы.

См. также

Литература

  • Справочник по радиоэлектронным устройствам : В 2-х т.; Под ред. Д. П. Линде - М.: Энергия,
  • Горохов П. К. Толковый словарь по радиоэлектронике. Основные термины - М: Рус. яз.,

Ссылки

  • ОСНОВНЫЕ ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ КАНАЛА ЗВУКОПЕРЕДАЧИ

Wikimedia Foundation . 2010 .

Смотреть что такое "" в других словарях:

    коэффициент нелинейных искажений - КНИ Параметр, позволяющий учесть влияние гармоник и комбинационных составляющих на качество сигнала. Численно определяется как отношение мощности нелинейных искажений к мощности неискаженного сигнала, обычно выражается в процентах. [Л.М. Невдяев …

    коэффициент нелинейных искажений - 3.9 коэффициент нелинейных искажений (total distortion): Отношение в процентах среднеквадратичного значения спектральных компонент выходного сигнала акустического калибратора, отсутствующих во входном сигнале, к среднеквадратичному значению… …

    коэффициент нелинейных искажений - netiesinių iškreipių faktorius statusas T sritis fizika atitikmenys: angl. non linear distortion factor vok. Klirrfaktor, m rus. коэффициент нелинейных искажений, m pranc. taux de distorsion harmonique, m … Fizikos terminų žodynas

    КНИ входного тока ИБП Характеризует отклонения формы входного тока ИБП от синусоидальной. Чем больше значение этого параметра, тем хуже это для оборудования, подключенного к той же питающей сети и самой сети, в этом случае ухудшается… … Справочник технического переводчика

    КНИ выходного напряжения ИБП Характеризует отклонения формы выходного напряжения от синусоидальной, обычно приводится для линейной (двигатели, некоторые виды осветительных приборов) и нелинейной нагрузки. Чем выше это значение, тем хуже качество… … Справочник технического переводчика

    коэффициент нелинейных искажений усилителя - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN amplifier distortion factor … Справочник технического переводчика

    Коэффициент нелинейных искажений громкоговорителя - 89. Коэффициент нелинейных искажений громкоговорителя Коэффициент нелинейных искажений Ндп. Коэффициент гармоник Выраженный в процентах квадратный корень из отношения суммы квадратов эффективных значений спектральных составляющих, излучаемых… … Словарь-справочник терминов нормативно-технической документации

    Коэффициент нелинейных искажений ларингофона - 94. Коэффициент нелинейных искажений ларингофона Выраженное в процентах значение квадратного корня из отношения суммы квадратов действующих значений гармоник электродвижущей силы, развиваемой ларингофоном при гармоническом движении воздуха, к… … Словарь-справочник терминов нормативно-технической документации

    допустимый коэффициент нелинейных искажений - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN harmonic tolerance … Справочник технического переводчика

    - (измеритель коэффициента гармоник) прибор для измерения коэффициента нелинейных искажений (коэффициента гармоник) сигналов в радиотехнических устройствах. Содержание … Википедия

Для проведения этого анализа необходимо следующее:

1. Изменить входной источник сигнала AC Voltage на Pulse Voltage и установить в нем параметры приведенные на рисунке.

2. В самом анализе следует установить следующее:


Рис. 11

Проанализировав полученный график оценим искажение импульса:

1) Выброс фронта?ф~1 В, это не превышает 4% от U ном и является неплохим показателем качества данного усилителя.

2) Скорость нарастания выходного напряжения?U~ 2 В/мкс и время нарастания

t Ф ~ 10 мксек, что в совокупности составляет неплохой показатель качества нарастания выходного сигнала в данном усилителе.

3) Так же усилитель имеет неплохие характеристики заднего фронта импульса, которые схожи с характеристиками переднего фронта.

Коэффициент гармоник

Нелинейные искажения вызваны прохождением сигнала через элементы, имеющие нелинейные характеристики, например, через транзисторы, вследствие чего искажается форма колебания и меняется его спектральный состав. Поскольку усилитель вносит нелинейные искажения, то на его выходе появляются новые компоненты (гармоники), отсутствующие на входе, что вызывает искажение тембра звука. Количественной оценкой нелинейных искажений является коэффициент гармоник Кг:

где Р г -- суммарная мощность гармоник; P 1 -- мощность полезного сигнала.

Из всех гармоник наиболее интенсивны вторая и третья. Остальные имеют гораздо меньшую мощность и мало влияют на форму выходного сигнала.

Коэффициент гармоник многокаскадного усилителя обычно близок к сумме коэффициентов гармоник отдельных каскадов. Поэтому если нелинейные искажения в предварительных каскадах соизмеримы с искажениями в оконечном каскаде, то общий коэффициент гармоник тракта звуковоспроизведения можно оценить по формуле:

Однако коэффициент К г дает неполное представление о нелинейных искажениях в усилителе, так как он не учитывает сигналы комбинационных частот, образующиеся в результате интерференции между отдельными составляющими сложного колебании. Наиболее заметны нелинейные искажения из-за комбинационных частот, возникающие при подаче на усилитель двух и большего числа синусоидальных сигналов. Особенно заметны комбинационные частоты вида f1--f2, f1--2f2, 2f1--f2, так как они, как правило, не содержатся в спектре даже сложного входного сигнала.

Для высококачественных усилителей часто вводят еще один показатель, характеризующий их нелинейность, -- коэффициент интермодуляционных искажений Ким.и. При измерении Kим.и на вход усилителя подают два гармонических колебания с частотами: f1 = 50... 100 Гц и f 2 = 5... 10 кГц при отношении амплитуд Uвх(f1)/Uвх(f2)=4/1- Коэффициент Ким.и равен отношению амплитуды выходного напряжения разностной частоты f 2 --f 1 к амплитуде выходного напряжения частоты f 1:

Рис. 12.

Допустимое значение Ким.и<0,1 ... 1%.

Нелинейные искажения значительно зависят от амплитуды подаваемого на вход сигнала. На рис. 12 показан характер зависимости коэффициента Кт от мощности на выходе усилителя. Эта кривая является основной характеристикой для оценки нелинейных искажении. Она служит также для определения максимальной полезной мощности усилителя по заданному Кг.

Коэффициент гармоник задается, как правило, для большого уровня входного сигнала. Для транзисторных усилителей мощности характерно увеличение нелинейных искажений при весьма малых уровнях входного сигнала, что вызвано искажениями типа "ступенька" или "центральная отсечка". Поэтому для полной оценки качества усилителя целесообразно контролировать К г также при малых уровнях входных сигналов.

В основном нелинейные искажения возникают в оконечном и предоконечном каскадах. Для оконечных усилителей вносимые нелинейные искажения различны на разных частотах. В области граничных частот полосы пропускания они возрастают (при неизменной амплитуде входного сигнала). Это объясняется реактивным характером сопротивления нагрузки оконечных транзисторов и связанным с этим изменением формы динамической характеристики на крайних частотах полосы пропускания.

Допустимые нелинейные искажения зависят от назначения усилителя. Так, в усилителях ЗЧ, используемых в радиовещании и бытовой звуковоспроизводящей аппаратуре, коэффициент гармоник по ГОСТ 11157--74 должен составлять 1 ... 2%. В высококачественной профессиональной аппаратуре К г <0,05%.

В последние годы резко улучшились параметры высококлассной звуковоспроизводящей аппаратуры. Особенно заметна тенденция к снижению нелинейных искажений. Появились усилители ЗЧ, у которых коэффициент Кг<0,0005%. Достижение чрезвычайно малых нелинейных искажений связано с применением большого количества транзисторов с высоким коэффициентом усиления и установлением глубокой ООС. Последнее обстоятельство приводит к ухудшению динамических (скоростных) характеристик, заключающемуся в том, что резкий скачок напряжения на выходе запаздывает по отношению к вызывающему его скачку на входе. Это приводит к "жесткому", "транзисторному" звучанию, исчезает мягкость, бархатистость звука при субъективном восприятии музыкальной программы.

Проблема заметности коэффициента гармоник в диапазоне 1 ... 0,0005% не имеет однозначного толкования. Можно лишь утверждать, что если получены малые нелинейные искажения, и они достигнуты не за счет ухудшения других параметров усилителя, то это говорит о совершенстве усилительного тракта.

Однако следует отметить, что испытание усилителей со сверхмалыми нелинейными искажениями предъявляет весьма высокие требования к нелинейным искажениям источника испытательных сигналов. Лучшие отечественные звуковые генераторы типа ГЗ-102 обеспечивают К г не менее 0,05%, т. е. имеют тот же порядок, что в нелинейные искажения, вносимые самим усилителем. Разрешающая способность измерителей нелинейных искажений С6-5 также составляет от 0,02 до 0,03%. Поэтому точные измерения сверхмалых нелинейных искажении весьма затруднительны.

Для испытаний сверхлинейных усилителей следует пользоваться прецизионными звуковыми генераторами и анализаторами спектра. Хорошие результаты при оценке сверхмалых нелинейных искажений дает метод компенсации.

Коэффициент нелинейных искажений (КНИ) ​

Ирина Алдошина​

Все электроакустические преобразователи (громкоговорители, микрофоны, телефоны и др.), а также каналы передачи вносят свои искажения в передаваемый звуковой сигнал, то есть воспринимаемый звуковой сигнал всегда не идентичен оригиналу. Идеология создания звуковой аппаратуры, получившая в 60-е годы название High-Fidelity, «высокой верности» живому звуку, в значительной степени не достигла своей цели. В те годы уровни искажений звукового сигнала в аппаратуре были еще очень высокими, и казалось, что достаточно их снизить - и звук, воспроизведенный через аппаратуру, будет практически неотличим от исходного.

Однако, несмотря на успехи в конструировании и развитии технологии, которые привели к значительному снижению уровней всех видов искажений в аудиоаппаратуре, по-прежнему не составляет особого труда отличить натуральный звук от воспроизведенного. Именно поэтому в настоящее время в различных странах в научно-исследовательских институтах, университетах и фирмах-производителях в большом объеме проводятся работы по изучению слухового восприятия и субъективной оценки различных видов искажений. По результатам этих исследований публикуется множество научных статей и докладов. Практически на всех конгрессах AES представляются доклады по этой теме. Некоторые современные результаты, полученные за последние два-три года, по проблемам субъективного восприятия и оценке нелинейных искажений звукового сигнала в аудиоаппаратуре и будут представлены в данной статье.

При записи, передаче и воспроизведении музыкальных и речевых сигналов через аудиоаппаратуру возникают искажения временной структуры сигнала, которые могут быть разделены на линейные и нелинейные.

Линейные искажения изменяют амплитудные и фазовые соотношения между имеющимися спектральными компонентами входного сигнала и за счет этого искажают его временную структуру. Такого рода искажения субъективно воспринимаются, как искажения тембра сигнала, и поэтому проблемам их снижения и субъективным оценкам их уровня уделялось очень много внимания со стороны специалистов на протяжении всего периода развития звукотехники.

Требование к отсутствию линейных искажений сигнала в аудиоаппаратуре может быть записано в форме:

Y(t) = K·x(t - T), где x(t) - входной сигнал, y(t) - выходной сигнал.

Это условие допускает только изменение сигнала в масштабе с коэффициентом К и его сдвиг во времени на величину Т. Оно определяет линейную связь между входным и выходным сигналами и приводит к требованию, чтобы передаточная функция H(ω), под которой понимается частотно-зависимое отношение комплексных амплитуд сигнала на выходе и на входе системы при гармонических воздействиях, была постоянная по модулю и имела линейную зависимость аргумента (то есть фазы) от частоты | H(ω) | = К, φ(ω) = -T·ω. Поскольку функция 20·lg | H(ω) | называется амплитудно-частотной характеристикой системы (АЧХ), а φ(ω) - фазо-частотной характеристикой (ФЧХ), то обеспечение постоянного уровня АЧХ в воспроизводимом диапазоне частот (снижение ее неравномерности) в микрофонах, акустических системах и др. является главным требованием для улучшения их качества. Методы их измерений введены во все международные стандарты, например, IEC268-5. Пример АЧХ современного контрольного агрегата фирмы Marantz с неравномерностью 2 дБ показан на рисунке 1.


АЧХ контрольного монитора фирмы Marantz

Следует отметить, что такое снижение величины неравномерности АЧХ является огромным достижением в конструировании аудиоаппаратуры (например, контрольные мониторы, представленные на выставке в Брюсселе в 1956 году, имели неравномерность 15 дБ), которое стало возможным в результате применения новых технологий, материалов и методов проектирования.

Влияние неравномерностей АЧХ (и ФЧХ) на субъективно воспринимаемое искажение тембра звучания достаточно детально исследовано. Обзор основных полученных результатов постараемся сделать в дальнейшем.

Нелинейные искажения характеризуются появлением в спектре сигнала новых составляющих, отсутствующих в первоначальном сигнале, количество и амплитуды которых зависят от изменения входного уровня. Появление дополнительных составляющих в спектре обусловлено нелинейной зависимостью выходного сигнала от входного, то есть нелинейностью передаточной функции. Примеры такой зависимости показаны на рисунке 2.


Различные типы нелинейных передаточных функций в аппаратуре

Причиной нелинейности могут являться конструктивные и технологические особенности электроакустических преобразователей.

Например, в электродинамических громкоговорителях (рисунок 3) к числу основных причин относятся:


Конструкция электродинамического громкоговорителя

Нелинейные упругие характеристики подвеса и центрирующей шайбы (пример зависимости гибкости подвесов в громкоговорителе от величины смещения звуковой катушки показан на рисунке 4);


Зависимость гибкости подвеса от величины смещения звуковой катушки

Нелинейная зависимость смещения звуковой катушки от величины приложенного напряжения из-за взаимодействия катушки с магнитным полем и из-за тепловых процессов в громкоговорителях;
- нелинейные колебания диафрагмы при большой величине воздействующей силы;
- колебания стенок корпуса;
- эффект Доплера при взаимодействии различных излучателей в акустической системе.
Нелинейные искажения возникают практически во всех элементах звукового тракта: микрофонах, усилителях, кроссоверах, процессорах эффектов и т. д.
Представленная на рисунке 2 зависимость между входным и выходным сигналами (например, между приложенным напряжением и звуковым давлением для громкоговорителя) может быть аппроксимирована в виде полинома:
y(t) = h1·x(t) + h2·x2(t) + h3·x3(t) + h4·x4(t) + … (1).
Если на такую нелинейную систему подать гармонический сигнал, т. е. x(t) = A·sin ωt, то в выходном сигнале будут присутствовать компоненты с частотами ω, 2ω, 3ω, …, nω и т. д. Например, если ограничиться только квадратичным членом, то появятся вторые гармоники, т. к.
y(t) = h1·A·sin ωt + h2·(A sin ωt)² = h1·A·sin ωt + 0,5·h2·А²·sin 2ωt + const.
В реальных преобразователях при подаче гармонического сигнала могут появиться гармоники второго, третьего и более высоких порядков, а также субгармоники (1/n)·ω (рисунок 5).


Для измерения такого вида искажений наиболее широкое распространение получили методы измерений уровня дополнительных гармоник в выходном сигнале (обычно только второй и третьей).
В соответствии с международными и отечественными стандартами производится запись АЧХ второй и третьей гармоники в заглушенных камерах и измеряется коэффициент гармонических искажений n-порядка:
KГn = pfn / pср·100%
где pfn-- среднеквадратичное значение звукового давления, соответствующее n-гармонической составляющей. По нему рассчитывается общий коэффициент гармонических искажений:
Кг = (KГ2² + KГ3² +KГ4² +KГ5² + ...)1/2
Например, в соответствии с требованиями МЭК 581-7, для акустических систем класса Hi-Fi полный коэффициент гармонических искажений не должен превышать 2% в диапазоне частот 250…1000 Гц и 1% в диапазоне свыше 2000 Гц. Пример зависимости коэффициента гармонических искажений для низкочастотного громкоговорителя диаметром 300 мм (12") от частоты для разных значений входного напряжения, меняющегося от 10 до 32 В, показан на рисунке 6.


Зависимость КНИ от частоты для разных значений входного напряжения

Следует отметить, что слуховая система чрезвычайно чувствительна к наличию нелинейных искажений в акустических преобразователях. «Заметность» гармонических составляющих зависит от их порядка, в частности, к нечетным составляющим слух наиболее чувствителен. При многократном прослушивании восприятие нелинейных искажений обостряется, особенно при прослушивании отдельных музыкальных инструментов. Частотная область максимальной чувствительности слуха к этим видам искажений находится в пределах 1…2 кГц, где порог чувствительности составляет 1…2%.
Однако такой метод оценки нелинейности не позволяет учесть все виды нелинейных продуктов, возникающих в процессе преобразования реального звукового сигнала. В результате может быть ситуация, когда акустическая система с КНИ в 10% может субъективно оцениваться выше по качеству звучания, чем система с КНИ в 1%, из-за влияния высших гармоник.
Поэтому поиски других способов оценки нелинейных искажений и их корреляции с субъективными оценками все время продолжаются. Особенно актуально это в настоящее время, когда уровни нелинейных искажений значительно снизились и для дальнейшего их снижения необходимо знание реальных порогов слышимости, поскольку уменьшение нелинейных искажений в аппаратуре требует значительных экономических затрат.
Наряду с измерениями гармонических составляющих в практике проектирования и оценки электроакустической аппаратуры используются методы измерений интермодуляционных искажений. Методика измерений представлена ГОСТ 16122-88 и МЭК 268-5 и основана на подведении к излучателю двух синусоидальных сигналов с частотами f1 и f2, где f1 < 1/8·f2 (при соотношении амплитуд 4:1) и измерении амплитуд звукового давления комбинационных тонов: f2 ± (n - 1)·f1, где n = 2, 3.
Суммарный коэффициент интермодуляционных искажений определяется в этом случае как:
Ким = (ΣnКимn²)1/2
где Ким = / pcp.
Причиной возникновения интермодуляционных искажений служит нелинейная связь между выходным и входным сигналами, т. е. нелинейная передаточная характеристика. Если на вход такой системы подать два гармонических сигнала, то в выходном сигнале будут содержаться гармоники высших порядков и суммарно-разностные тоны различных порядков.
Вид выходного сигнала с учетом нелинейностей более высоких порядков показан на рисунке 5.


Продукты нелинейных искажений в громкоговорителях

Характеристики зависимости коэффициента интермодуляционных искажений от частоты для низкочастотного громкоговорителя со звуковыми катушками различной длины показаны на рисунке 7 (а - для более длинной катушки, б - для более короткой).


Зависимость коэффициента интермодуляционных искажений (IMD) от частоты для громкоговорителя с длинной (а) и короткой (б) катушкой

Как сказано выше, в соответствии с международными стандартами в аппаратуре измеряются только коэффициенты интермодуляционных искажений второго и третьего порядков. Измерения интермодуляционных искажений могут быть информативнее, чем гармонические, поскольку являются более чувствительным критерием нелинейности. Однако, как показали эксперименты, выполненные в работах Р. Геддса (доклад на 115 конгрессе AES в Нью-Йорке), четкой корреляции между субъективными оценками качества акустических преобразователей и уровнем интермодуляционных искажений установить не удалось - слишком большой разброс в полученных результатах (как видно из рисунка 8).


Связь субъективных оценок с величиной коэффициента интермодуляционных искажений (IMD)

В качестве нового критерия для оценки нелинейных искажений в электроакустической аппаратуре был предложен многотоновый метод, история и способы применения которого детально исследованы в работах А. Г. Войшвилло и др. (имеются статьи в JAES и доклады на конгрессах AES). В этом случае в качестве входного сигнала используется набор гармоник от 2-й до 20-й с произвольным распределением амплитуд и логарифмическим распределением частот в диапазоне от 1 до 10 кГц. Распределение фаз гармоник оптимизируется с целью минимизации пик-фактора многотонового сигнала. Общий вид входного сигнала и его временная структура показаны на рисунках 9а и 9б.


Спектральный (а) и временной (б) вид многотонового сигнала

В выходном сигнале выделяются гармонические и интермодуляционные искажения всех порядков. Пример таких искажений для громкоговорителя показан на рисунке 10.


Общие продукты нелинейных искажений при применении многотонового сигнала

Многотоновый сигнал по своей структуре гораздо ближе к реальным музыкальным и речевым сигналам, он позволяет выделить значительно больше различных продуктов нелинейных искажений (в первую очередь интермодуляционных) и лучше коррелирует с субъективными оценками качества звучания акустических систем. С увеличением числа составляющих гармоник данный метод позволяет получить все более детальную информацию, но при этом увеличиваются вычислительные затраты. Применение этого метода требует дальнейших исследований, в частности разработки критериев и допустимых норм на выделенные продукты нелинейных искажений с позиций их субъективных оценок.
Для оценки нелинейных искажений в акустических преобразователях используются и другие методы, например ряды Вольтера.
Однако все они не обеспечивают четкой связи между оценкой качества звучания преобразователей (микрофонов, громкоговорителей, акустических систем и др.) и уровнем нелинейных искажений в них, измеренных любыми из известных объективных методов. Поэтому представляет значительный интерес новый психоакустический критерий, предложенный в докладе Р. Геддса на последнем конгрессе AES. Он исходил из соображений, что любой параметр можно оценивать в объективных единицах, а можно и по субъективным критериям, например, температуру можно измерить в градусах, а можно в ощущениях: холодно, тепло, жарко. Громкость звука можно оценить по уровню звукового давления в дБ, а можно - в субъективных единицах: фон, сон. Поиск аналогичных критериев для нелинейных искажений и был целью его работы.
Как известно из психоакустики, слуховой аппарат является принципиально нелинейной системой, причем его нелинейность проявляется как на больших, так и на малых уровнях сигнала. Причинами нелинейности служат гидродинамические процессы в улитке уха, а также нелинейная компрессия сигнала за счет специального механизма удлинения внешних волосковых клеток. Это приводит к появлению субъективных гармоник и комбинационных тонов при прослушивании гармонических или суммарных гармонических сигналов, уровень которых может достигать 15…20% от уровня входного сигнала. Поэтому анализ восприятия продуктов нелинейных искажений, создаваемых в электроакустических преобразователях и каналах передачи, в такой сложной нелинейной системе, как слуховой аппарат, является серьезной проблемой.
Другое принципиально важное свойство слуховой системы - это эффект маскировки, заключающийся в изменении порогов слуха к одному сигналу в присутствии другого (маскера). Это свойство слуховой системы широко используется в современных системах сжатия звуковой информации при ее передаче по различным каналам (стандарты MPEG). Успехи, достигнутые в уменьшении объемов передаваемой информации за счет сжатия с использованием свойств слуховой маскировки, заставляют предположить, что эти эффекты имеют огромное значение также для восприятия и оценки нелинейных искажений.
Установленные законы слуховой маскировки позволяют утверждать, что:
- маскировка высокочастотных составляющих (находящихся выше частоты сигнала-маскера) происходит значительно сильнее, чем в сторону низких частот;
- маскировка сильнее проявляется для ближайших частот (локальный эффект, рисунок 11);
- с увеличением уровня сигнала-маскера зона его воздействия расширяется, она становится все более асимметричной, происходит ее сдвиг в сторону высоких частот.

Отсюда можно предположить, что при анализе нелинейных искажений в слуховой системе соблюдаются следующие правила:
- продукты нелинейных искажений выше основной частоты менее важны для восприятия (они лучше маскируются), чем низкочастотные компоненты;
- чем ближе к основному тону располагаются продукты нелинейных искажений, тем больше вероятность, что они станут незаметными и не будут иметь субъективного значения;
- дополнительные нелинейные компоненты, возникающие за счет нелинейности, могут быть гораздо важнее для восприятия при низких уровнях сигнала, чем при высоких. Это показано на рисунке 11.


Эффекты маскировки

Действительно, с повышением уровня основного сигнала зона его маскировки расширяется, и все больше продуктов искажений (гармоник, суммарных и разностных искажений и др.) попадает в нее. При низких уровнях эта зона ограничена, поэтому продукты искажений высоких порядков будут более слышимы.
При измерениях нелинейных продуктов на чистом тоне в преобразователях возникают, в основном, гармоники с частотой выше основного сигнала n f. Однако в громкоговорителях могут возникать и низкие гармоники с частотами (1/n)·f. При измерениях интермодуляционных искажений (как с помощью двух сигналов, так и с помощью многотоновых сигналов) возникают продукты искажений суммарно-разностные - как выше, так и ниже основных сигналов m·f1 ± n·f2.
Учитывая перечисленные свойства слуховой маскировки, можно сделать следующие выводы: продукты нелинейных искажений более высоких порядков могут быть более слышимы, чем продукты более низких порядков. Например, практика проектирования громкоговорителей показывает, что гармоники с номерами выше пятой, воспринимаются на слух гораздо неприятнее, чем вторая и третья, даже если их уровни гораздо меньше, чем у первых двух гармоник. Обычно их появление воспринимается как дребезжание и приводит к отбраковке громкоговорителей в производстве. Появление субгармоник с половинной и ниже частотами также сразу замечается слуховой системой как призвук, даже на очень малых уровнях.
Если порядок нелинейности низкий, то с увеличением уровня входного сигнала дополнительные гармоники могут быть замаскированы в слуховой системе и не восприниматься как искажения, что подтверждается практикой проектирования электроакустических преобразователей. Акустические системы с уровнем нелинейных искажений 2% могут достаточно высоко оцениваться слушателями. В то же время хорошие усилители должны иметь уровень искажений 0,01% и ниже, что, по-видимому, связано с тем, что акустические системы создают продукты искажений низких порядков, а усилители - гораздо более высоких.
Продукты нелинейных искажений, которые возникают на низких уровнях сигнала, могут быть гораздо более слышимыми, чем на высоких уровнях. Это, казалось бы, парадоксальное утверждение также может иметь значение для практики, поскольку нелинейные искажения в электроакустических преобразователях и трактах могут возникать и при малых уровнях сигналов.
Исходя из вышесказанных соображений, Р. Геддс предложил новый психоакустический критерий для оценки нелинейных искажений, который должен был удовлетворять следующим требованиям: быть чувствительнее к искажениям более высокого порядка и иметь большее значение для низких уровней сигнала.
Проблема состояла в том, чтобы показать, что этот критерий больше соответствует субъективному восприятию нелинейных искажений, чем принятые в настоящее время методы оценок: коэффициент нелинейных искажений и коэффициент интермодуляционных искажений на двухтоновом или многотоновом сигналах.
С этой целью была проведена серия субъективных экспертиз, организованная следующим образом: тридцать четыре эксперта с проверенными порогами слуха (средний возраст 21 год) участвовали в большой серии экспериментов по оценке качества звучания музыкальных отрывков (например, мужской вокал с симфонической музыкой), в которые были введены различные виды нелинейных искажений. Выполнено это было путем «свертки» испытываемого сигнала с нелинейными передаточными функциями, свойственными преобразователям различных типов (громкоговорителям, микрофонам, стереотелефонам и др.).
Вначале в качестве стимулов были использованы синусоидальные сигналы, выполнена их «свертка» с различными передаточными функциями и определен коэффициент гармонических искажений. Затем были использованы два синусоидальных сигнала и рассчитаны коэффициенты интермодуляционных искажений. Наконец, прямо по заданным передаточным функциям был определен вновь предложенный коэффициент Gm. Расхождения оказались очень значительными: например, для одной и той же передаточной функции КНИ равен 1%, Ким - 2,1%, Gm - 10,4%. Такое различие физически объяснимо, так как Ким и Gm учитывают гораздо больше продуктов нелинейных искажений высоких порядков.
Слуховые эксперименты были выполнены на стереотелефонах с диапазоном 20 Гц…16 кГц, чувствительностью 108 дБ, макс. SPL 122 дБ. Субъективная оценка ставилась по семибальной шкале для каждого музыкального фрагмента, от «много лучше», чем опорный фрагмент (т. е. музыкальный отрывок, «свернутый» с линейной передаточной функцией), до «много хуже». Статистическая обработка результатов слуховой оценки позволила установить достаточно высокий коэффициент корреляции между средними значениями субъективных оценок и значением коэффициента Gm, который оказался равным 0,68. В тоже время для КНИ он составлял 0,42, а для Ким - 0,34 (для данной серии экспериментов).
Таким образом, связь предложенного критерия с субъективными оценками качества звучания оказалась существенно выше, чем у других коэффициентов (рисунок 12).


Связь коэффициента Gm с субъективными оценками

Результаты экспериментов показали также, что электроакустический преобразователь, у которого Gm меньше 1%, может считаться вполне удовлетворительным по качеству звучания в том смысле, что нелинейные искажения в нем практически неслышимы.
Разумеется, этих результатов еще недостаточно, чтобы заменить предложенным критерием имеющиеся в стандартах параметры, такие как коэффициент гармонических искажений и коэффициент интермодуляционных искажений, однако если результаты подтвердятся при дальнейших экспериментах, то, возможно, именно так и произойдет.
Поиски других новых критериев также активно продолжаются, поскольку несоответствие имеющихся параметров (особенно коэффициента гармонических искажений, оценивающего только две первые гармоники) субъективно воспринимаемому качеству звучания становится все более очевидным по мере улучшения общего качества аудиоаппаратуры.
По-видимому, дальнейшие пути решения этой проблемы пойдут в направлении создания компьютерных моделей слуховой системы, с учетом нелинейных процессов и эффектов маскировки в ней. В этой области работает Институт коммуникационной акустики в Германии под руководством Д. Блауэрта, о котором уже было написано в статье, посвященной 114 конгрессу AES. С помощью этих моделей можно будет оценивать слышимость различных видов нелинейных искажений в реальных музыкальных и речевых сигналах. Однако, пока они еще не созданы, оценки нелинейных искажений в аппаратуре будут производиться с помощью упрощенных методов, максимально приближенных к реальным слуховым процессам.

Коэффициент нелинейных искажений (КНИ) или Total Harmonic Distorsions (THD) – показатель, характеризующий степень отличия формы сигнала от синусоидальной, так же можно сказать это – величина для количественной оценки нелинейных искажений периодического сигнала.

Русский термин «коэффициент искажения» эквивалентен зарубежному термину «искаженный коэффициент мощности» . Его можно выразить также через THD как показано ниже:

2) Коэффициент нелинейных искажений (КНИ) – величина для количественной оценки нелинейных искажений, равная отношению среднеквадратичной суммы всех высших спектральных компонентов сигнала, к среднеквадратичной сумме спектральных компонентов всего сигнала (кроме постоянной составляющей), иногда используется нестандартизованный синоним – клирфактор (заимств. с нем.). КНИ – безразмерная величина, выражается обычно в процентах.

Коэффициент гармоник (КГ) так же как и КНИ выражается в процентах. Коэффициент гармоник (KГ) связан с КНИ (KН ) соотношением:

Важное замечание:
Следует признать, что данная терминология долгое время являлась «правильной» для русскоязычной, немецкоязычной литературы, так же именно эти определения продолжают использоваться в некоторых анализаторах сети , но в связи с преобладанием обратной терминологии в большинстве современного оборудования (анализаторы сети, ИБП, стабилизаторы, корректоры коэффициента мощности и др.) рекомендуется применение терминов приведенных в самом начале.

Данную терминологию нельзя признать неправильной, но данные и технические характеристики оборудования N-Power указываются в соответствии с европейской и международной терминологией, поэтому рекомендуется применение терминов приведённых в самом начале.

Российский стандарт. Коэффициент нелинейных искажений (КНИ) и качество сетевого электропитания (ГОСТ 13109-97)

Ниже представлены выдержки из ГОСТ 13109-97:

Вычисляют значение коэффициента искажения синусоидальности кривой напряжения Кт в процентах как результат i-го наблюдения по формуле:

Примечание:
Относительная погрешность определения КUi с использованием формулы (Б.16) вместо формулы (Б.15) численно равна значению отклонения напряжения U(1)i от Uном.

Формула приведенная в данном ГОСТе первой (Б.15) соответствует международному определению термина КНИ / THD (см. начало статьи, см. стандарт EN 62040-3).

Европейский стандарт качества сетевого электропитания (EN 62040-3), и коэффициент нелинейных искажений тока

Коэффициент нелинейных искажений по току в % идентичен базовому определению КНИ, определенному в стандарте EN 62040-3 и рассчитывается как процентное отношение среднеквадратичных значений высших гармоник к базовой (первой) гармоники. См. прилагаемую формулу.

Ф.Е.Евдокимов. Теоретические основы электротехники М., Академия 2004 cтр. 262

Г.И. Атабеков. Основы Теории Цепей с.176, стр. 434

Анализатор сети Fluke 435. Руководство пользователя

Справочник по радиоэлектронным устройствам. В 2-х т. Под ред. Д. П. Линде – М.: Энергия, 1978

Горохов П. К. Толковый словарь по радиоэлектронике. Основные термины – М: Рус. яз., 1993

Коэффициент нелинейных искажений: http://ru.wikipedia.org/

Total Harmonic Distortion: http://en.wikipedia.org/wiki/Total_harmonic_distortion

Total Harmonic Distortion: http://de.wikipedia.org/wiki/THDi http://de.wikipedia.org/wiki/Total_Harmonic_Distortion

П.Шпритек. Справочное руководство по звуковой схемотехнике 3.1.1. Москва Мир 1991

Анализатор сети DMK62 Lovato. Руководство пользователя:

ГОСТ 8.331-99 ГСИ. Измерители коэффициента гармоник. Методы и средства поверки и калибровки.

Анализатор сети HIOKI3197. Руководство пользователя

Современные международные обозначения КНИ(THD)
Приведённые ниже термины повторяют определения приведённые выше.
I

Дополнение1
Замечание: существуют другие определения КНИ(THD) например приведённые ниже но в силовой электротехнике они не используются:
I THD

II THD+N
THD+N обозначает общие искажения плюс шум.

Дополнение2
Внимание!
Во избежании путаницы ниже приведены термины ранее использовавшиеся в русскоязычных учебниках по радио/электротехнике.
Эти термины могут использоваться в настоящее время в радиотехнике но в силовой электротехнике во избежании путаницы рекомендовано применение международных терминов приведённых выше.
В русскоязычной литературе ранее были приняты обозначения и термины:
I
Коэффицие́нт нелине́йных искаже́ний (КНИ)
или Коэффициент искажения(ий)
или Коэффициент гармонических искажений сигнала
равен отношению действующего значениия основной(первой) гармоники к действующему значению всего сигнала (всей функции).
d=Кни=КНИ=A1/A=I1/I
Для синусоиды d=1, для треугольного сигнала d~=0,99, для прямоуг. сигнала d=0,9.
Дополнительная информация:

II
Коэффицие́нт нелине́йных искаже́ний (КНИ) - величина для количественной оценки нелинейных искажений, равная отношению среднеквадратичной суммы всех высших спектральных компонентов сигнала, к среднеквадратичной сумме спектральных компонентов всего сигнала (кроме постоянной составляющей), иногда используется нестандартизованный синоним - клирфактор (заимств. с нем.). КНИ - безразмерная величина, выражается обычно в процентах.

Коэффициент гармонических искажений - величина, выражающая степень нелинейных искажений устройства (усилителя и др.), равная отношению среднеквадратичного напряжения суммы высших гармоник сигнала к напряжению первой гармоники при воздействии на вход устройства синусоидального сигнала.

Коэффициент гармоник так же как и КНИ выражается в процентах. Коэффициент гармоник (KГ) связан с КНИ (KН) соотношением:

Замечание 1: следует признать что данная терминология долгое время являлась «правильной» для русскоязычной, немецкоязычной литературы, так же именно эти определения продолжают использоваться в некоторых анализаторах сети , но в связи с преобладанием обратной терминологии в большинстве современного оборудования (анализаторы сети, ИБП, стабилизаторы, корректоры коэфф. мощности и др.) рекомендуется применение терминов приведённых в самом начале.
Эту терминологию нельзя признать неправильной, но данные и технические характеристики оборудования N-Power указываются в соответствии с европейской и международной терминологией, поэтому рекомендуется применение терминов приведённых в самом начале.

Из приведённых в ГОСТ определений видно что вторая формула соответствует определению КНИ (несмотря на то что термин КНИ вообоще отсутствует).

Ф.Е.Евдокимов Теоретические основы электротехники М., Академия 2004 c.262.
Г.И. Атабеков Основы Теории Цепей с.176, 434с.
Анализатор сети Fluke 435 Руководство пользователя
Справочник по радиоэлектронным устройствам: В 2-х т.; Под ред. Д. П. Линде - М.: Энергия, 1978
Горохов П. К. Толковый словарь по радиоэлектронике. Основные термины - М: Рус. яз., 1993
http://ru.wikipedia.org/ Коэффициент нелинейных искажений
http://en.wikipedia.org/wiki/Total_harmonic_distortion
http://de.wikipedia.org/wiki/THDi http://de.wikipedia.org/wiki/Total_Harmonic_Distortion
П.Шпритек Справочное руководство по звуковой схемотехнике 3.1.1, Москва Мир 1991
Анализатор сети DMK62 Lovato Руководство пользователя.
http://www.lovatoelectric.com/RICERCA/ITALIANO/03_ISTRUZIONI/I104IGBFE04_08.PDF
ГОСТ 8.331-99 ГСИ. Измерители коэффициента гармоник. Методы и средства поверки и калибровки
ГОСТ 8.110-97 ГСИ. Государственная поверочная схема для средств измерения коэффициента гармоник
ГОСТ 13109-97
Анализатор сети HIOKI3197 Руководство пользователя

С замечаниями по содержанию этого раздела просьба обращаться: .

Александр.
SIEL подвердил что все правильно с THD
Можно целиком текст ниже в статью включить+этот стандарт тоже.
Даниил А.
________________________________________
From: Mazza Angelo
Sent: Wednesday, December 21, 2011 7:33 PM
To: Daniil A.
Cc: "Олег Сергеев"; Matoshi Gladiola; Pensini Glauco
Subject: R: SafePower Evo input THD //l2
Dear Mr. Daniil,
the value THDI%, indicated in the manual, is the definition of Total Harmonic Distortion and is exactly equal to the definition expressed by UPS Statement of EN 62040-3, which defines it as the percentage ratio of the rms value of the harmonic content and the rms value of the fundamental component (first harmonic) which expressed by the following relationship:

The values I1, I2, I3, ect….are rms values.

Входного сигнала, к среднеквадратичной сумме всех спектральных компонент входного сигнала

texvc не найден; См. math/README - справку по настройке.): K_\mathrm{H} = \frac{ \sqrt{U_2^2 + U_3^2 + U_4^2 + \ldots + U_n^2+ \ldots } }{ \sqrt{U_1^2+U_2^2 + U_3^2 + \ldots + U_n^2+ \ldots }}

КНИ - безразмерная величина и выражается обычно в процентах. Кроме КНИ, уровень нелинейных искажений часто выражают и через коэффициент гармонических искажений (КГИ или K Г ) - величину, выражающую степень нелинейных искажений устройства (усилителя и др.) и равную отношению среднеквадратичного напряжения суммы высших гармоник сигнала, кроме первой, к напряжению первой гармоники при воздействии на вход устройства синусоидального сигнала.

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} = \frac{ \sqrt{U_2^2 + U_3^2 + U_4^2 + \ldots + U_n^2+ \ldots } }{U_1}

КГИ, так же, как и КНИ, выражается в процентах и связан с ним соотношением

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} = \frac{K_\mathrm{H}}{\sqrt{1 - K^2_\mathrm{H}}}

Очевидно, что для малых значений КГИ и КНИ совпадают в первом приближении. Интересно, что в западной литературе обычно пользуются КГИ, тогда как в отечественной литературе традиционно предпочитают КНИ.

Важно также отметить, что КНИ и КГИ - это лишь количественные меры искажений , но не качественные. Например, значение КНИ (КГИ), равное 3% ничего не говорит о характере искажений, т.е. о том, как в спектре сигнала распределены гармоники, и каков, например, вклад НЧ или ВЧ составляющих. Так, в спектрах ламповых УМЗЧ обычно преобладают низшие гармоники, что часто воспринимается на слух как «тёплый ламповый звук», а в транзисторных УМЗЧ искажения более равномерно распределены по спектру, и он более плоский, что часто воспринимается как «типичный транзисторный звук» (хотя спор этот во многом зависит от личных ощущений и привычек человека).

Примеры расчёта КГИ

Для многих стандартных сигналов КГИ может быть подсчитан аналитически. Так, для симметричного прямоугольного сигнала (меандра)

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} \,= \,\sqrt{\frac{\,\pi^2}{8}-1\,}\approx \, 0.483\,=\,48.3\%

Идеальный пилообразный сигнал имеет КГИ

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} \,= \,\sqrt{\frac{\,\pi^2}{6}-1\,}\approx \, 0.803\,=\,80.3\%

а симметричный треугольный

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} \,= \,\sqrt{\frac{\,\pi^4}{96}-1\,}\approx\,0.121\,= \, 12.1\%

Несимметричный прямоугольный импульсный сигнал с соотношением длительности импульса к периоду, равному μ обладает КГИ

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma}\,(\mu)=\sqrt{\frac{\mu(1-\mu)\pi^2\,}{2\sin^2\pi\mu}-1\;}\,\qquad 0<\mu<1 ,

который достигает минимума (≈0.483) при μ =0.5, т.е. тогда, когда сигнал становится симметричным меандром. Кстати, фильтрованием можно добиться значительного снижения КГИ этих сигналов, и таким образом получать сигналы, близкие по форме к синусоидальным. Например, симметричный прямоугольный сигнал (меандр) с изначальным КГИ в 48.3%, после прохождения через фильтр Баттерворта второго порядка (с частотой среза, равной частоте основной гармоники) имеет КГИ уже в 5.3%, а если фильтр четвёртого порядка - то КГИ=0.6%. Следует отметить, что чем более сложный сигнал на входе фильтра и чем более сложный сам фильтр (а точнее, его передаточная функция), тем более громоздкими и трудоёмкими будут вычисления КГИ. Так, стандартный пилообразный сигнал, прошедший через фильтр Баттерворта первого порядка, имеет КГИ уже не 80.3% а 37.0%, который в точности даётся следующим выражением

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} \,= \, \sqrt{\frac{\,\pi^2}{3} - \pi\,\mathrm{cth}\,\pi\,}\,\approx\,0.370\,= \, 37.0\%

А КГИ того же сигнала, прошедшего через такой же фильтр, но второго порядка, уже будет даваться достаточно громоздкой формулой

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma}\,= \sqrt{\pi\,\frac{\,\mathrm{ctg}\,\dfrac{\pi}{\sqrt{2\,}}\cdot\,\mathrm{cth}^{2\!}\dfrac{\pi}{\sqrt{2\,}} -\,\mathrm{ctg}^{2\!}\dfrac{\pi}{\sqrt{2\,}}\cdot\,\mathrm{cth}\,\dfrac{\pi}{\sqrt{2\,}} -\,\mathrm{ctg}\,\dfrac{\pi}{\sqrt{2\,}} - \,\mathrm{cth}\,\dfrac{\pi}{\sqrt{2\,}}\;} {\sqrt{2\,}\left(\mathrm{ctg}^{2\!}\dfrac{\pi}{\sqrt{2\,}} +\,\mathrm{cth}^{2\!}\dfrac{\pi}{\sqrt{2\,}}\!\right)} \,+\,\frac{\,\pi^2}{3} \,-\, 1\;} \;\approx\;0.181\,= \, 18.1\%

Если же рассматривать вышеупомянутый несимметричный прямоугольный импульсный сигнал, прошедший через фильтр Баттерворта p -ого порядка, то тогда

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma}\,(\mu, p)= \csc\pi\mu\,\cdot \!\sqrt{\mu(1-\mu)\pi^2-\,\sin^2\!\pi\mu\, -\,\frac{\,\pi}{2}\sum_{s=1}^{2p} \frac{\,\mathrm{ctg}\,\pi z_s}{z_s^2} \prod\limits_{\scriptstyle l=1\atop\scriptstyle l\neq s}^{2p}\!\frac{1}{\,z_s-z_l\,}\, +\,\frac{\,\pi}{2}\,\mathrm{Re}\sum_{s=1}^{2p} \frac{e^{i\pi z_s(2\mu-1)}}{z_s^2\sin \pi z_s} \prod\limits_{\scriptstyle l=1\atop\scriptstyle l\neq s}^{2p}\!\frac{1}{\,z_s-z_l\,}\,}

где 0<μ <1 и

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): z_l\equiv \exp{\frac{i\pi(2l-1)}{2p}}\, \qquad l=1, 2,\ldots, 2p

подробности вычислений - см. Ярослав Благушин и Эрик Моро .

Измерения

  • В низкочастотном (НЧ) диапазоне для измерения КНИ применяются измерители нелинейных искажений (измерители коэффициента гармоник).
  • На более высоких частотах (СЧ, ВЧ) используют косвенные измерения с помощью анализаторов спектра или селективных вольтметров .

Типовые значения КНИ и КГИ

Ниже приведены некоторые типовые значения для КНИ, и в скобках, для КГИ.

См. также

Напишите отзыв о статье "Коэффициент нелинейных искажений"

Литература, ссылки, примечания

  • Справочник по радиоэлектронным устройствам : В 2-ух томах; Под ред. Д. П. Линде - М.: Энергия,
  • Горохов П. К. Толковый словарь по радиоэлектронике. Основные термины - М: Рус. яз.,

Дополнительные ссылки

Отрывок, характеризующий Коэффициент нелинейных искажений

Я застыла в настоящем шоке. Почему-то такой невероятный факт никак не хотел укладываться в моей ошарашенной голове...
– Бабушка?.. – только и смогла произнести я.
Стелла кивнула, очень довольная произведённым эффектом.
– Как же так? Поэтому она и помогла тебе их найти? Она знала?!.. – тысячи вопросов одновременно бешено крутились в моём взбудораженном мозгу, и мне казалось, что я никак не успею всего меня интересующего спросить. Я хотела знать ВСЁ! И в то же время прекрасно понимала, что «всего» мне никто не собирается говорить...
– Я наверное потому его и выбрала, что чувствовала что-то. – Задумчиво сказала Стелла. – А может это бабушка навела? Но она никогда не признается, – махнула рукой девчушка.
– А ОН?.. Он тоже знает? – только и смогла спросить я.
– Ну, конечно же! – рассмеялась Стелла. – А почему тебя это так удивляет?
– Просто она уже старенькая... Ему это должно быть тяжело, – не зная, как бы поточнее объяснить свои чувства и мысли, сказала я.
– О, нет! – опять засмеялась Стелла. – Он был рад! Очень-очень рад. Бабушка дала ему шанс! Никто бы не смог ему в этом помочь – а она смогла! И он увидел её опять... Ой, это было так здорово!
И тут только наконец-то я поняла, о чём она говорит... Видимо, бабушка Стеллы дала своему бывшему «рыцарю» тот шанс, о котором он так безнадёжно мечтал всю свою длинную, оставшуюся после физической смерти, жизнь. Ведь он так долго и упорно их искал, так безумно хотел найти, чтобы всего лишь один только раз мог сказать: как ужасно жалеет, что когда-то ушёл... что не смог защитить... что не смог показать, как сильно и беззаветно их любил... Ему было до смерти нужно, чтобы они постарались его понять и смогли бы как-то его простить, иначе ни в одном из миров ему незачем было жить...
И вот она, его милая и единственная жена, явилась ему такой, какой он помнил её всегда, и подарила ему чудесный шанс – подарила прощение, а тем же самым, подарила и жизнь...
Тут только я по-настоящему поняла, что имела в виду Стеллина бабушка, когда она говорила мне, как важен подаренный мною «ушедшим» такой шанс... Потому что, наверное, ничего страшнее на свете нет, чем остаться с не прощённой виной нанесённой обиды и боли тем, без кого не имела бы смысла вся наша прошедшая жизнь...
Я вдруг почувствовала себя очень усталой, как будто это интереснейшее, проведённое со Стеллой время отняло у меня последние капельки моих оставшихся сил... Я совершенно забыла, что это «интересное», как и всё интересное раньше, имело свою «цену», и поэтому, опять же, как и раньше, за сегодняшние «хождения», тоже приходилось платить... Просто все эти «просматривания» чужих жизней являлись огромной нагрузкой для моего бедного, ещё не привыкшего к этому, физического тела и, к моему великому сожалению, меня пока что хватало очень ненадолго...
– Ты не волнуйся, я тебя научу, как это делать! – как бы прочитав мои грустные мысли, весело сказала Стелла.
– Делать, что? – не поняла я.
– Ну, чтобы ты могла побыть со мной дольше. – Удивившись моему вопросу, ответила малышка. – Ты живая, поэтому тебе и сложно. А я тебя научу. Хочешь погулять, где живут «другие»? А Гарольд нас здесь подождёт. – Лукаво сморщив маленький носик, спросила девочка.
– Прямо сейчас? – очень неуверенно спросила я.
Она кивнула... и мы неожиданно куда-то «провалились», «просочившись» через мерцающую всеми цветами радуги «звёздную пыль», и оказались уже в другом, совершенно не похожем на предыдущий, «прозрачном» мире...
* * *

Ой, ангелы!!! Смотри, мамочка, Ангелы! – неожиданно пропищал рядом чей-то тоненький голосок.
Я ещё не могла очухаться от необычного «полёта», а Стелла уже мило щебетала что-то маленькой кругленькой девчушке.
– А если вы не ангелы, то почему вы так сверкаете?.. – искренне удивившись, спросила малышка, и тут же опять восторженно запищала: – Ой, ма-а-амочки! Какой же он красивый!..
Тут только мы заметили, что вместе с нами «провалилось» и последнее «произведение» Стеллы – её забавнейший красный «дракончик»...

Светлана в 10 лет

– Это... что-о это? – аж с придыхом спросила малышка. – А можно с ним поиграть?.. Он не обидится?
Мама видимо мысленно её строго одёрнула, потому что девочка вдруг очень расстроилась. На тёплые коричневые глазки навернулись слёзы и было видно, что ещё чуть-чуть – и они польются рекой.
– Только не надо плакать! – быстро попросила Стелла. – Хочешь, я тебе сделаю такого же?
У девочки мгновенно засветилась мордашка. Она схватила мать за руку и счастливо заверещала:
– Ты слышишь, мамочка, я ничего плохого не сделала и они на меня совсем не сердятся! А можно мне иметь такого тоже?.. Я, правда, буду очень хорошей! Я тебе очень-очень обещаю!
Мама смотрела на неё грустными глазами, стараясь решить, как бы правильнее ответить. А девочка неожиданно спросила:
– А вы не видели моего папу, добрые светящиеся девочки? Он с моим братиком куда-то исчез...
Стелла вопросительно на меня посмотрела. И я уже заранее знала, что она сейчас предложит...
– А хотите, мы их поищем? – как я и думала, спросила она.
– Мы уже искали, мы здесь давно. Но их нет. – Очень спокойно ответила женщина.
– А мы по-другому поищем, – улыбнулась Стелла. – Просто подумайте о них, чтобы мы смогли их увидеть, и мы их найдём.
Девочка смешно зажмурилась, видимо, очень стараясь мысленно создать картинку своего папы. Прошло несколько секунд...
– Мамочка, а как же так – я его не помню?.. – удивилась малышка.
Такое я слышала впервые и по удивлению в больших Стеллиных глазах поняла, что для неё это тоже что-то совершенно новенькое...
– Как так – не помнишь? – не поняла мать.
– Ну, вот смотрю, смотрю и не помню... Как же так, я же его очень люблю? Может, и правда его больше нет?..
– Простите, а вы можете его увидеть? – осторожно спросила у матери я.
Женщина уверенно кивнула, но вдруг что-то в её лице изменилось и было видно, что она очень растерялась.
– Нет... Я не могу его вспомнить... Неужели такое возможно? – уже почти испуганно сказала она.
– А вашего сына? Вы можете вспомнить? Или братика? Ты можешь вспомнить своего братика? – обращаясь сразу к обеим, спросила Стелла.
Мама и дочь отрицательно покачали головами.
Обычно такое жизнерадостное, личико Стеллы выглядело очень озабоченным, наверное, никак не могла понять, что же такое здесь происходит. Я буквально чувствовала напряжённую работу её живого и такого необычного мозга.